» » Печень перекрещивает метаболизм углеводов, липидов и белков. Какие функции выполняет печень

Печень перекрещивает метаболизм углеводов, липидов и белков. Какие функции выполняет печень

Глюкокиназы и автоматически увеличивает поглощение глюкозы печенью (образовавшийся глюкозо-6-фосфат либо затрачивается на синтез гликогена , либо расщепляется).

Считают, что основная роль печени – расщепление глюкозы – сводится прежде всего к запасанию метаболитов-предшественников, необходимых для биосинтеза жирных кислот и глицерина , и в меньшей степени к окислению ее до СО 2 и Н 2 О. Синтезированные в печени триглицериды в норме выделяются в кровь в составе липопротеинов и транспортируются в жировую ткань для более «постоянного» хранения.

В реакциях пентозофосфатного пути в печени образуется НАДФН, используемый для восстановительных реакций в процессах синтеза жирных кислот, холестерина и других стероидов . Кроме того, при этом образуются пентозофосфаты, необходимые для синтеза нуклеиновых кислот .

Основными субстратами глюконеогенеза служат лактат, глицерин и аминокислоты . Принято считать, что почти все аминокислоты , за исключением лейцина , могут пополнять пул предшественников глюконеогенеза .

При оценке углеводной функции печени необходимо иметь в виду, что соотношение между процессами утилизации и образования глюкозы регулируется прежде всего нейрогуморальным путем при участии желез внутренней секреции .

Центральную роль в превращениях глюкозы и саморегуляции углеводного обмена в печени играет глюкозо-6-фосфат. Он резко тормозит фосфоролитическое расщепление гликогена , активирует ферментативный перенос глюкозы с уридиндифосфоглюкозы на молекулу синтезирующегося гликогена , является субстратом для дальнейших гликолитических превращений, а также окисления глюкозы , в том числе по пентозофосфатному пути. Наконец, расщепление глюкозо-6-фосфата фосфатазой обеспечивает поступление в кровь свободной глюкозы , доставляемой током крови во все органы и ткани .

Как отмечалось, наиболее мощным аллостерическим активатором фосфофруктокиназы-1 и ингибитором фруктозо-1,6-бисфосфатазы печени является фруктозо-2,6-бисфосфат (Ф-2,6-Р 2). Повышение в гепатоцитах уровня Ф-2,6-Р 2 способствует усилению гликолиза и уменьшению скорости глюконеогенеза . Ф-2,6-Р 2 снижает ингибирующее действие АТФ на фосфо-фруктокиназу-1 и увеличивает сродство этого фермента к фруктозо-6-фосфату. При ингибировании фруктозо-1,6-бисфосфатазы Ф-2,6-Р 2 возрастает значение К М для фруктозо-1,6-бисфосфата. Содержание Ф-2,6-Р 2 в печени, сердце, скелетной мускулатуре и других тканях контролируется бифункциональным ферментом , который осуществляет синтез Ф-2,6-Р 2 из фруктозо-6-фосфата и АТФ и гидролиз его до фруктозо-6-фосфата и P i , т.е. фермент одновременно обладает и киназной, и бисфосфатазной активностью .

Следует отметить, что при генетически обусловленной нетолерантности к фруктозе или недостаточной активности фруктозо-1,6-бисфосфатазы наблюдается индуцируемая фруктозой гипогликемия, возникающая вопреки наличию больших запасов гликогена . Вероятно, фруктозо-1-фосфат и фруктозо-1,6-бисфосфат ингибируют фосфорилазу печени по аллосте-рическому механизму.

Известно также, что метаболизм фруктозы по гликолитическому пути в печени происходит гораздо быстрее, чем метаболизм глюкозы . Для метаболизма глюкозы характерна стадия, катализируемая фосфофрукто-киназой-1. Как известно, на этой стадии осуществляется метаболический контроль скорости катаболизма глюкозы . Фруктоза минует эту стадию, что позволяет ей интенсифицировать в печени процессы метаболизма , ведущие к синтезу жирных кислот, их эстерификацию и секрецию липопротеинов очень низкой плотности; в результате может увеличиваться концентрация триглицеридов в плазме крови .

РОЛЬ ПЕЧЕНИ В ЛИПИДНОМ ОБМЕНЕ

Ферментные системы печени способны катализировать все реакции или значительное большинство реакций метаболизма липидов . Совокупность этих реакций лежит в основе таких процессов, как синтез высших жирных кислот , триглицеридов, фосфолипидов , холестерина и его эфиров, а также липолиз триглицеридов, окисление жирных кислот, образование ацетоновых (кетоновых) тел и т.д. Напомним, что ферментативные реакции синтеза триглицеридов в печени и жировой ткани сходны. Так, КоА-производные жирной кислоты с длинной цепью взаимодействуют с глицерол-3-фосфатом с образованием фосфатидной кислоты, которая затем гидролизуется до диглицерида. Путем присоединения к последнему еще одной молекулы КоА-производного жирной кислоты образуется триглицерид. Синтезированные в печени три-глицериды либо остаются в печени, либо секретируются в кровь в форме липопротеинов . Секреция происходит с известной задержкой (у человека 1–3 ч). Задержка секреции , вероятно, соответствует времени, необходимому для образования липопротеинов . Основным местом образования плазменных пре-β-липопротеинов (липопротеины очень низкой плотности – ЛПОНП) и α-липопротеинов (липопротеины высокой плотности – ЛПВП) является печень.

РОЛЬ ПЕЧЕНИ В ОБМЕНЕ БЕЛКОВ

Печень играет центральную роль в обмене белков . Она выполняет следующие основные функции: синтез специфических белков плазмы ; образование мочевины и мочевой кислоты ; синтез холина и креатина; трансаминирование и дезаминирование аминокислот , что весьма важно для взаимных превращений аминокислот , а также для процесса глюконеогенеза и образования кетоновых тел. Все альбумины плазмы , 75–90% α-глобу-линов и 50% β-глобулинов синтезируются гепатоцитами. Лишь γ-гло-булины продуцируются не гепатоцитами, а системой макрофагов, к которой относятся звездчатые ретикулоэндотелиоциты (клетки Купфера). В основном γ-глобулины образуются в печени. Печень является единственным органом, где синтезируются такие важные для организма белки , как протромбин , фибриноген , проконвертин и проакцелерин.

При заболеваниях печени определение фракционного состава белков плазмы (или сыворотки) крови нередко представляет интерес как в диагностическом, так и в прогностическом плане. Известно, что патологический процесс в гепатоцитах резко снижает их синтетические возможности. В результате содержание альбумина в плазме крови резко падает, что может привести к снижению онкотического давления плазмы крови , развитию отеков, а затем асцита. Отмечено, что при циррозах печени, протекающих с явлениями асцита, содержание альбуминов в сыворотке крови на 20% ниже, чем при циррозах без асцита.

Нарушение синтеза ряда белковых факторов системы свертывания крови

при тяжелых заболеваниях печени может привести к геморрагическим явлениям.

При поражениях печени нарушается также процесс дезаминирования аминокислот , что способствует увеличению их концентрации в крови и моче. Так, если в норме содержание азота аминокислот в сыворотке крови составляет примерно 2,9–4,3 ммоль/л, то при тяжелых заболеваниях печени (атрофические процессы) эта величина возрастает до 21 ммоль/л, что приводит к аминоацидурии. Например, при острой атрофии печени количество тирозина в суточном количестве мочи может достигать 2 г (при норме 0,02–0,05 г/сут).

В организме образование мочевины в основном происходит в печени. Синтез мочевины связан с затратой довольно значительного количества энергии (на образование 1 молекулы мочевины расходуется 3 молекулы АТФ). При заболевании печени, когда количество АТФ в гепатоцитах уменьшено, синтез мочевины нарушается. Показательно в этих случаях определение в сыворотке отношения азота мочевины к аминоазоту. В норме это отношение равно 2:1, а при тяжелом поражении печени составляет 1:1.

Большая часть мочевой кислоты также образуется в печени, где много фермента ксантиноксидазы, при участии которого оксипурины (гипо-ксантин и ксантин) превращаются в мочевую кислоту . Нельзя забывать о роли печени и в синтезе креатина. Имеются два источника креатина в организме . Существует экзогенный креатин, т.е. креатин пищевых продуктов (мясо, печень и др.), и эндогенный креатин, синтезирующийся в тканях . Синтез креатина происходит в основном в печени, откуда он с током крови поступает в мышечную ткань . Здесь креатин, фосфори-лируясь, превращается в креатинфосфат, а из последнего образуется креатин.

Детоксикация различных веществ в печени

Чужеродные вещества (ксенобиотики) в печени нередко превращаются в менее токсичные и даже индифферентные вещества . По-видимому, только в этом смысле можно говорить об «обезвреживании» их в печени. Происходит это путем окисления , восстановления , метилирования , ацетилирования и конъюгации с теми или иными веществами . Необходимо отметить, что в печени окисление , восстановление и гидролиз чужеродных соединений осуществляют в основном микросомальные ферменты . Наряду с микро-сомальным в печени существует также пероксисомальное окисление . Пероксисомы – микротельца, обнаруженные в гепатоцитах; их можно рассматривать как специализированные окислительные органеллы. Эти микротельца содержат оксидазу мочевой кислоты , лактатоксидазу, окси-дазу D-аминокислот, а также каталазу. Последняя катализирует расщепление перекиси водорода , которая образуется при действии указанных оксидаз; отсюда и название этих микротелец – пероксисомы. Пероксисо-мальное окисление , так же как и микросомальное, не сопровождается образованием макроэргических связей.

В печени широко представлены также «защитные» синтезы, например синтез мочевины , в результате которого обезвреживается весьма токсичный аммиак . В результате гнилостных процессов, протекающих в кишечнике, из тирозина образуются фенол и крезол , а из триптофона – скатол и индол . Эти вещества всасываются и с током крови поступают в печень, где обезвреживаются путем образования парных соединений с серной или глюкуроновой кислотой .

Обезвреживание фенола , крезола , скатола и индола в печени происходит в результате взаимодействия этих соединений не со свободными серной и глюкуроновой кислотами , а с их так называемыми активными формами: ФАФС и УДФГК.

Глюкуроновая кислота участвует не только в обезвреживании продуктов гниения белковых веществ , образовавшихся в кишечнике, но и в связывании ряда других токсичных соединений, образующихся в процессе обмена в тканях . В частности, свободный, или непрямой, билирубин , обладающий значительной токсичностью , в печени взаимодействует с глюкуроновой кислотой , образуя моно- и диглюкурониды билирубина . Нормальным метаболитом является и гиппуровая кислота, образующаяся в печени из бензойной кислоты и глицина .

Синтез гиппуровой кислоты у человека протекает преимущественно в печени. Поэтому в клинической практике довольно часто для выяснения антитоксической функции печени применяют пробу Квика–Пытеля (при нормальной функциональной способности почек): после нагрузки бензо-атом натрия в моче определяют количество образовавшейся гиппуровой кислоты. При паренхиматозных поражениях печени синтез гиппуровой кислоты снижен.

В печени широко представлены процессы метилирования . Так, перед выделением с мочой амид никотиновой кислоты (витамин РР) метилируется в печени; в результате образуется N-метилникотинамид. Наряду с метилированием интенсивно протекают и процессы ацетилирования . В частности, в печени ацетилированию подвергаются различные сульфаниламидные препараты .

Примером обезвреживания токсичных продуктов в печени путем восстановления является превращение нитробензола в парааминофенол. Многие ароматические углеводы обезвреживаются путем окисления с образованием соответствующих карбоновых кислот .

Печень принимает активное участие в инактивации различных гормонов . С током крови гормоны попадают в печень, при этом активность их в большинстве случаев резко снижается или полностью утрачивается. Так, стероидные гормоны , подвергаясь микросомальному окислению , инакти-вируются, превращаясь затем в соответствующие глюкурониды и сульфаты. Под влиянием аминооксидаз в печени происходит окисление ка-техоламинов и т.д.

Из приведенных примеров видно, что печень способна инактивировать ряд сильнодействующих физиологических и чужеродных (в том числе токсичных) веществ .

Роль печени в пигментном обмене

Рассмотрим только гемохромогенные пигменты , которые образуются в организме при распаде гемоглобина (в значительно меньшей степени при распаде миоглобина , цитохромов и др.). Распад гемоглобина протекает в клетках макрофагов, в частности в звездчатых ретикулоэндотелиоцитах, а также в гистиоцитах соединительной ткани любого органа.

Начальным этапом распада гемоглобина является разрыв одного метинового мостика с образованием вердоглобина. В дальнейшем от молекулы вердоглобина отщепляются атом железа и белок глобин . В результате образуется биливердин, который представляет собой цепочку из четырех пиррольных колец, связанных метановыми мостиками. Затем биливердин, восстанавливаясь, превращается в билирубин – пигмент , выделяемый с желчью и поэтому называемый желчным пигментом . Образовавшийся билирубин называется непрямым (неконъю-гированным) билирубином . Он нерастворим в воде , дает непрямую реакцию с диазореактивом, т.е. реакция протекает только после предварительной обработки спиртом .

В печени билирубин соединяется (конъюгирует) с глюкуроновой кислотой . Эта реакция катализируется ферментом УДФ-глюкуронилтранс-феразой, при этом глюкуроновая кислота вступает в реакцию в активной форме, т.е. в виде УДФГК. Образующийся глюкуронид билирубина получил название прямого билирубина (конъюгированный билирубин). Он растворим в воде и дает прямую реакцию с диазореактивом. Большая часть билирубина соединяется с двумя молекулами глюкуроновой кислоты , образуя диглюкуронид билирубина :

Образовавшийся в печени прямой билирубин вместе с очень небольшой частью непрямого билирубина выводится с желчью в тонкую кишку. Здесь от прямого билирубина отщепляется глюкуроновая кислота и происходит его восстановление с последовательным образованием мезобилирубина и мезобилиногена (уробилиногена). Принято считать, что около 10% билирубина восстанавливается до мезобилиногена на пути в тонкую кишку, т.е. во внепеченочных желчных путях и в желчном пузыре. Из тонкой кишки часть образовавшегося мезобилиногена (уробилиногена) резорбируется через кишечную стенку, попадает в воротную вену и током крови переносится в печень, где расщепляется полностью до ди- и трипирролов. Таким образом, в норме в общий круг кровообращения и мочу мезобилиноген не попадает.

Основное количество мезобилиногена из тонкой кишки поступает в толстую и здесь восстанавливается до стеркобилиногена при участии анаэробной микрофлоры. Образовавшийся стеркобилиноген в нижних отделах толстой кишки (в основном в прямой кишке) окисляется до стерко-билина и выделяется с калом. Лишь небольшая часть стеркобилиногена всасывается в систему нижней полой вены (попадает сначала в геморроидальные вены) и в дальнейшем выводится с мочой. Следовательно, в норме моча человека содержит следы стеркобилиногена (за сутки его выделяется с мочой до 4 мг). К сожалению, до последнего времени в клинической практике стеркобилиноген, содержащийся в нормальной моче, продолжают называть уробилиногеном. На рис. схематично показаны пути образования уробилиногеновых тел в организме человека. В клинической практике укоренился термин «уробилиноген мочи». Под этим термином следует понимать те производные билирубина (билирубиноиды), которые обнаруживаются в моче. Положительная реакция на уробилиноген может быть обусловлена повышенным содержанием того или иного билирубиноида в моче и является, как правило, отражением патологии.

Определение в клинике содержания билирубина в крови (общего, непрямого и прямого), а также уробилиногена мочи имеет важное значение при дифференциальной диагностике желтух различной этиологии. При гемолитической желтухе («надпеченочной») вследствие повышенного гемолиза эритроцитов и разрушения гемоглобина происходит интенсивное образование непрямого билирубина в ретикулоэндотелиальной системе, б). Печень оказывается неспособной утилизировать такое большое количество непрямого билирубина , что приводит к его накоплению в крови и тканях . В печени при этом синтезируется повышенное количество прямого билирубина , который с желчью попадает в кишечник. В тонкой кишке в повышенных количествах образуется мезобилиноген и в последующем – стеркобилиноген. Всосавшаяся часть мезобилиногена утилизируется печенью, а резорбирующийся в толстой кишке стеркобилиноген выводится с мочой. Таким образом, для гемолитической желтухи в типичных случаях характерны следующие клинико-лабораторные показатели: повышение уровня общего и непрямого билирубина в крови, в моче – отсутствие билирубина (непрямой билирубин не фильтруется почками) и положительная реакция на уробилиноген (за счет повышенного попадания в кровь и мочу стеркобилиногена, а в тяжелых случаях – и за счет мезобилиногена, не утилизирующегося печенью); лимонно-желтый оттенок кожных покровов (сочетание желтухи и анемии); увеличение размеров селезенки; ярко окрашенный кал.

При механической (обтурационной, или «подпеченочной») желтухе, в) нарушен отток желчи (закупорка общего желчного протока камнем, рак головки поджелудочной железы). Это приводит к деструктивным изменениям в печени и попаданию элементов желчи (билирубин, холестерин , желчные кислоты) в кровь. При полной обтурации общего желчного протока желчь не попадает в кишечник, поэтому образования в кишечнике билирубиноидов не происходит, кал обесцвечен и реакция на уробилиноген мочи отрицательная. Таким образом, при механической желтухе в крови повышено количество общего билирубина (за счет прямого), увеличено содержание холестерина и желчных кислот , а в моче – высокий уровень билирубина (прямого). Клиническими особенностями обтурационной желтухи являются яркая желтушная окраска кожи , бесцветный кал, зуд кожи (раздражение нервных окончаний желчными кислотами , отлагающимися в коже). Следует заметить, что при длительно сохраняющейся механической желтухе могут существенно нарушаться функции печени, в том числе одна из главных – детоксикационная. В этом случае может произойти частичный «отказ» печени от непрямого билирубина , что может привести к его накоплению в крови. Иными словами, увеличение уровня фракции непрямого билирубина при механической желтухе является плохим прогностическим признаком.

При паренхиматозной («печеночной») желтухе, возникающей чаще всего при ее вирусном поражении, развиваются воспалительно-деструктивные процессы в печени, ведущие к нарушению ее функций. На начальных этапах гепатита процесс захвата и глюкуронирования непрямого билирубина сохраняется, однако образующийся прямой билирубин в условиях деструкции печеночной паренхимы частично попадает в большой круг кровообращения, что ведет к желтухе. Экскреция желчи также нарушена, билирубина в кишечник попадает меньше, чем в норме. Меньше обычного образуется мезобилиногена, и меньшее количество его всасывается в кишечнике. Однако даже это небольшое количество поступающего в печень мезобилиногена не усваивается ею. Мезобилиноген, «уклоняясь», попадает в кровь, а затем выделяется с мочой, что предопределяет положительную реакцию на уробилиноген. Количество образующегося стеркобилиногена также снижено, поэтому кал гипохоличный. Итак, при паренхиматозной желтухе отмечается повышение в крови концентрации общего билирубина , преимущественно за счет прямого. В кале снижено содержание стеркобилиногена. Реакция на уробилиноген мочи положительная за счет попадания в мочу мезобилиногена. Следует отметить, что при прогрессирующем гепатите, когда печень утрачивает свою детоксикационную функцию, в крови накапливается значительное количество и непрямого билирубина . Кроме того, при резко выраженном воспалении печени, ее «набухании», может произойти сдавление желчных капилляров и протоков, возникнуть внутрипеченочный холестаз, что придает паренхиматозной желтухе черты механической с соответствующей клинико-лабораторной картиной (ахоличный кал, отсутствие реакции на уробилиноген).

В табл. приведены наиболее характерные сдвиги клинико-лабо-раторных показателей при различных типах желтух. Следует иметь в виду, что в практике редко наблюдается желтуха какого-либо одного типа в «чистом» виде. Чаще встречается сочетание того или иного типа. Так, при выраженном гемолизе неизбежно страдают различные органы, в том числе и печень, что может привнести элементы паренхиматозной желтухи при гемолизе . В свою очередь паренхиматозная желтуха, как правило, включает в себя элементы механической. При механической желтухе, возникающей вследствие сдавливания большого сосочка двенадцатиперстной кишки (фатерова соска) при раке Желчь – жидкий секрет желтовато-коричневого цвета, отделяется печеночными клетками . В сутки у человека образуется 500–700 мл желчи (10 мл на 1 кг массы тела). Желчеобразование происходит непрерывно, хотя интенсивность этого процесса на протяжении суток резко колеблется. Вне пищеварения печеночная желчь переходит в желчный пузырь, где происходит ее сгущение в результате всасывания воды и электролитов . Относительная плотность печеночной желчи 1,01, а пузырной – 1,04. Концентрация основных компонентов в пузырной желчи в 5–10 раз выше, чем в печеночной.

Предполагают, что образование желчи начинается с активной секреции гепатоцитами воды , желчных кислот и билирубина , в результате которой в желчных канальцах появляется так называемая первичная желчь. Последняя, проходя по желчным ходам, вступает в контакт с плазмой крови , вследствие чего между желчью и плазмой устанавливается равновесие электролитов , т.е. в образовании желчи принимают участие в основном два механизма – фильтрация и секреция .

В печеночной желчи можно выделить две группы веществ . Первая группа – это вещества , которые присутствуют в желчи в количествах, мало отличающихся от их концентрации в плазме крови (например, ионы Na + , К + , креатин и др.), что в какой-то мере служит доказательством наличия фильтрационного механизма. Ко второй группе относятся соединения, концентрация которых в печеночной желчи во много раз превышает их содержание в плазме крови (билирубин, желчные кислоты и др.), что свидетельствует о наличии секреторного механизма. В последнее время появляется все больше данных о преимущественной роли активной секреции в механизме желчеобразования. Кроме того, в желчи обнаружен ряд ферментов , из которых особо следует отметить щелочную фосфатазу печеночного происхождения. При нарушении оттока желчи активность данного фермента в сыворотке крови возрастает.

Основные функции желчи. Эмульсификация. Соли желчных кислот обладают способностью значительно уменьшать поверхностное натяжение . Благодаря этому они осуществляют эмульгирование жиров в кишечнике, растворяют жирные кислоты и нерастворимые в воде мыла . Нейтрализация кислоты. Желчь, рН которой немногим более 7,0, нейтрализует кислый химус, поступающий из желудка, подготавливая его для переваривания в кишечнике. Экскреция. Желчь – важный носитель экскрети-руемых желчных кислот и холестерина . Кроме того, она удаляет из организма многие лекарственные вещества , токсины , желчные пигменты и различные неорганические вещества , такие, как медь , цинк и ртуть . Растворение холестерина . Как отмечалось, холестерин , подобно высшим жирным кислотам , представляет собой нерастворимое в воде соединение, которое сохраняется в желчи в растворенном состоянии лишь благодаря присутствию в ней солей желчных кислот и фосфатидилхолина . При недостатке желчных кислот холестерин выпадает в осадок, при этом могут образовываться камни. Обычно камни имеют окрашенное желчным пигментом внутреннее ядро, состоящее из белка . Чаще всего встречаются камни, у которых ядро окружено чередующимися слоями холестерина и билирубината кальция . Такие камни содержат до 80% холестерина . Интенсивное образование камней отмечается при застое желчи и наличии инфекции. При застое желчи встречаются камни, содержащие 90–95% холестерина , а при инфекции могут образовываться камни, состоящие из билирубината кальция . Принято считать, что присутствие бактерий сопровождается увеличением β-глюкуронидазной активности желчи, что приводит к расщеплению конъюгатов билирубина ; освобождающийся билирубин служит субстратом для образования камней.

Министерство образования и науки РФ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Пермский национальный исследовательский политехнический университет

Кафедра охраны окружающей среды


Курсовая работа по дисциплине «Физиология»

Обмен белков. Обмен жиров. Обмен углеводов. Печень, ее роль в обмене веществ.


Выполнил: студент группы ООС-11

Мякишева Александра



Введение

Глава 1. Обмен белков

1.1 Белки и их функции

1.2 Промежуточный обмен белков

1.3 Регуляция обмена белков

1.4 Баланс азотистого обмена

Глава 2. Обмен жиров

2.1 Жиры и их функции

2.2 Переваривание и всасывание жиров в организме

2.3 Регуляция обменов жиров

Глава 3. Обмен углеводов

3.1 Углеводы и их функции

3.2 Расщепление углеводов в организме

3.3 Регуляция обмена углеводов

Глава 4. Печень, ее роль в обмене веществ

4.1 Структура печени

4.2 Функции печени

4.3 Роль печени в обмене веществ

Вывод

Список литературы


Введение


Нормальная деятельность организма возможна при непрерывном поступлении пищи. Входящие в состав пищи жиры, белки, углеводы, минеральные соли, вода и витамины необходимы для жизненных процессов организма.

Питательными веществами называются белки, жиры и углеводы. Эти вещества являются как источником энергии, покрывающем расходы организма, так и строительным материалом, который используется в процессе роста организма и воспроизведения новых клеток, замещающих отмирающие. Но питательные вещества в том виде, в каком они употребляются в пищу, не могут всосаться и быть использованными организмом. Только вода, минеральные соли и витамины всасываются и усваиваются в том виде, в каком они поступают. В пищеварительном тракте белки, жиры и углеводы подвергаются физическим воздействиям (измельчаются и перетираются) и химическим изменениям, которые происходят под влиянием особых веществ - ферментов, содержащихся в соках пищеварительных желёз. Под влиянием пищеварительных соков питательные вещества расщепляются на более простые, которые всасываются и усваиваются организмом. В свою очередь печень - регулятор содержания в крови веществ, поступающих в организм в составе пищевых продуктов. Она поддерживает стабильность внутренней среды организма. В печени протекают важнейшие процессы углеводного, белкового и жирового обмена.

Цель работы: Провести оценку обмена жиров, белков и углеводов. Установить какую роль занимает печень в обмене веществ.

.Узнать, как происходит обмен белков, жиров и углеводов

.Познакомится со специфическими свойствами белков, жиров и углеводов

.Проанализировать какую роль занимает печень в обмене веществ

жир белок углевод печень


Глава 1. Обмен белков


Жизнь - есть форма существования белковых тел (Ф. Энгельс).

Обмен белков в организме человека играет первостепенную роль в их разрушении и восстановлении. У здорового человека в нормальных условиях за сутки обновляется 1-2% общего количества белков тела, что связано в основном с расщеплением (деградацией) мышечных белков до уровня свободных аминокислот. Около 80% высвобождающихся аминокислот снова используется в процессах биосинтеза белка, остаток принимает участие в различных реакциях метаболизма <#"justify">1.1 Белки и их функции


Белок - высокомолекулярные органические вещества, состоящие из альфа-аминокислот, соединённых в цепочку пептидной связью.

Белки являются основным веществом, из которого построена протоплазма клеток и межклеточные вещества. Без белков нет и не может быть жизни. Все ферменты, без которых не могут протекать обменные процессы, являются белковыми телами.

Строение белков отличается большой сложностью. При гидролизе кислотами, щелочами и протеолитическими ферментами белок расщепляется до аминокислот, общее число которых более двадцати пяти. Помимо аминокислот, в состав различных белков входят и многие другие компоненты (фосфорная кислота, углеводные группы, липоидные группы, специальные группировки).

Белки отличаются высокой специфичностью. В каждом организме и в каждой ткани имеются белки, отличные от белков, входящих в состав других организмов и других тканей. Высокая специфичность белков может быть выявлена при помощи биологической пробы.

Основное значение белков заключается в том, что за их счет строятся клетки и межклеточное вещество и синтезируются вещества, принимающие участие в регуляции физиологических функций. В известной мере белки, однако, наряду с углеводами и жирами, используются и для покрытия энергетических затрат.

Функции белков:

·Пластическая функция белков состоит в обеспечении роста и развития организма за счет процессов биосинтеза. Белки входят в состав всех клеток организма и межтканевых структур.

·Ферментативная активность белков регулирует скорость протекания биохимических реакций. Белки-ферменты определяют все стороны обмена веществ и образования энергии не только из самих протеинов, но из углеводов и жиров.

·Защитная функция белков состоит в образовании иммунных белков - антител. Белки способны связывать токсины и яды а также обеспечивать свертываемость крови (гемостаз).

·Транспортная функция заключается в переносе кислорода и двуокиси углерода эритроцитным белком гемоглобином, а также в связывании и переносе некоторых ионов (железо, медь, водород), лекарственных веществ, токсинов.

·Энергетическая роль белков обусловлена их способностью освобождать при окислении энергию. Однако при этом пластическая роль белков в метаболизме превосходит ихэнергетическую, а также пластическую роль других питательных веществ. Особенно велика потребность в белке в периоды роста, беременности, выздоровления после тяжелых заболеваний.

В пищеварительном тракте белки расщепляются до аминокислот и простейших полипептидов, из которых в дальнейшем клетками различных тканей и органов, в частности печени, синтезируются специфические для них белки. Синтезированные белки используются для восстановления разрушенных и роста новых клеток, синтеза ферментов и гормонов .


1.2 Промежуточный обмен белков


Распад (расщепление) белков в организме, в основном, происходит за счёт ферментативного гидролиза. Основным материалом для обновления клеточных белков служат аминокислоты, получаемые при переработке пищи, в которой содержатся белки. Всасывание аминокислот в кровь происходит главным образом в тонком кишечнике, где существуют определённые системы транспорта аминокислот. С помощью кровотока аминокислоты доставляются во все органы и ткани организма человека. Максимальная концентрация аминокислот достигается через 30-50минут после приема белковой пищи. Изменяя количественное соотношение между поступающими в организм аминокислотами или исключая из рациона ту или иную аминокислоту, можно по состоянию азотистого баланса, росту, массе тела и общему состоянию животных судить о значении для организма отдельных аминокислот. Экспериментально установлено, что из 20 входящих в состав белков аминокислот 12 синтезируются в организме - заменимые аминокислоты, а 8 не синтезируются - незаменимые аминокислоты.

Без незаменимых аминокислот синтез белка резко нарушается и наступает отрицательный баланс азота, останавливается рост, уменьшается масса тела. Для людей незаменимыми аминокислотами являются лейцин, изолейцин, валин, метионин, лизин, треонин, фенилаланин, триптофан.

Белки в организме не депонируются, т.е. не откладываются в запас. Большая часть поступающих с пищей белков расходуется на энергетические цели. На пластические цели - т.е. на образование новых тканей (органов, мышц) расходуется лишь его небольшая часть. Поэтому, чтобы добавить массу тела за счет белка необходимо его поступление в организм в повышенных количествах.

Скорость обновления белков неодинакова для различных тканей. С наибольшей скоростью обновляются белки печени, слизистой оболочки кишечника, плазмы крови. Медленно обновляются белки, входящие в состав клеток мозга, сердца, половых желез. Еще медленнее обновляются белки кожи, мышц, особенно опорных тканей - сухожилий, хрящей и костей.


1.3 Регуляция обмена белков


Нейроэндокринная регуляция обмена белков осуществляется рядом гормонов. Соматотропный гормон гипофиза во время роста организма стимулирует увеличение массы всех органов и тканей. У взрослого человека он обеспечивает процесс синтеза белка за счет повышения проницаемости клеточных мембран для аминокислот, усиления синтеза РНК в ядре клетки и подавления синтеза катепсинов - внутриклеточных протеолитических ферментов. Существенное влияние на белковый обмен оказывают гормоны щитовидной железы - тироксин и трийодтиронин. Они могут в определенных концентрациях стимулировать синтез белка и благодаря этому активизировать рост, развитие и дифференциацию тканей и органов. При базедовой болезни, характеризующейся усиленным выделением гормонов щитовидной железы (гипертиреоз), белковый обмен повышен. Напротив, при гипофункции щитовидной, железы (гипотиреоз) интенсивность белкового обмена резко снижается. Так как деятельность щитовидной железы находится под контролем нервной системы, то последняя и является истинным регулятором белкового обмена. Гормоны коры надпочечников - глюкокортикоиды (гидрокортизон, кортикостерон) усиливают распад белков в тканях, особенно в мышечной и лимфоидной. В печени же глюкокортикоиды, наоборот, стимулируют синтез белка .

На ход обмена белков оказывает большое влияние характер пищи. При мясной пище повышено количество образующейся мочевой кислоты, креатинина и аммиака. При растительной пище эти вещества образуются в значительно меньших количествах, так как в растительной пище мало пуринових тел и креатина.


1.4 Баланс азотистого обмена


К числу важных конечных продуктов азотистого обмена относятся также креатинин и гиппуровая кислота. Креатинин представляет собой ангидрид креатина. Креатин находится в мышцах и в мозговой ткани в свободном состоянии и в соединении с фосфорной кислотой (фосфокреатин). Гиппуровая кислота синтезируется из бензойной кислоты и гликокола (у человека преимущественно в печени и в меньших размерах в почках).

Продуктами распада белков, подчас имеющими большое физиологическое значение, являются амины (например, гистамин).

Изучение белкового обмена облегчается тем, что в состав белка входит азот. Содержание азота в различных белках колеблется от 14 до 19%, в среднем же составляет 16% т. е. 1 г азота содержится в 6,25 г белка. Следовательно, умножив найденное количество азота на 6,25, можно определить количество усвоенного белка. Между количеством азота, введенного с белками пищи, и количеством азота, выводимым из организма, существует определенная связь. Увеличение поступления белка в организм приводит к увеличению выделения азота из организма. У взрослого человека при адекватном питании, как правило, количество введенного в организм азота равно количеству азота, выведенного из организма. Это состояние получило название азотистого равновесия. Если в условиях азотистого равновесия повысить количество белка в пище, то азотистое равновесие вскоре восстановится, но уже на новом, более высоком уровне. Таким образом, азотистое равновесие может устанавливаться при значительных колебаниях содержания белка в пище.

Во время роста организма или прироста в весе за счет усвоения увеличенного количества белков (например, после голодания, после инфекционных болезней) количество вводимого с пищей азота больше, чем количество выводимого. Азот задерживается в теле в форме белкового азота. Это обозначается как положительный азотистый баланс. При голодании, при заболеваниях, сопровождающихся большим распадом белков, наблюдается превышение выделяемого азота над вводимым, что обозначается как отрицательный азотистый баланс. В этом случаи не происходит полного восстановления белка. При недостатке белка в пище расходуется белки печени и мышц.

В организме белки в запас не откладываются, а лишь временно задерживаются в печени. Нормальная жизнедеятельность организма возможна при азотистом равновесии или положительном азотистом балансе.

При поступлении в тело белков в количестве меньшем, чем это соответствует белковому минимуму, организм испытывает белковое голодание: потери белков организмом восполняются в недостаточной степени. В течение более или менее продолжительного срока в зависимости от степени голодания отрицательный белковый баланс не грозит опасными последствиями. Однако, если голодание не прекратится, наступает смерть.

При продолжительном общем голодании количество азота, выводимого из организма, впервые дни резко снижается, затем устанавливается на постоянном низком уровне. Это обусловлено исчерпанием последних остатков других энергетических ресурсов, в частности, жиров.

Глава 2. Обмен жиров


Общее количество жира в организме человека колеблется в широких пределах и составляет в среднем 10-12% массы тела, а в случаях ожирения может достигать 50% массы тела. Количество запасного жира зависит от характера питания, количества потребляемой пищи, пола, возраста и т. п.

Использование жира в качестве источника энергии начинается с его выхода из жировых депо в кровяное русло. Этот процесс называется мобилизация жира. Мобилизация жира ускоряется под действием симпатической нервной системы и гормона адреналина.


1 Жиры и их функции


Жиры - природные органические соединения, полные сложные эфиры глицерина и одноосновных жирных кислот; входят в класс липидов.

В живых организмах выполняют прежде всего структурную и энергетическую функции: они являются основным компонентом клеточной мембраны, а в жировых клетках сохраняется энергетический запас организма .

Жиры делятся на две группы - собственно жиры или липиды и жироподобные вещества или липоиды. В состав жиров входят углерод, водород и кислород. Жир имеет сложное строение; его составными частями является глицерин (С3Н8О3) и жирные кислоты, при соединении сложноэфирной связью и образуются молекулы жира. Это так называемые истинные жиры или триглицериды.

Жирные кислоты, входящие в состав жиров делятся на предельные и непредельные. Первые не имеют двойных связей и называются ещё насыщенными, а вторые имеют двойные связи и называются ненасыщенными. Есть ещё полиненасыщенные жирные кислоты, имеющие две и более двойные связи. Такие жирные кислоты в организме человека не синтезируются и должны обязательно поступать с пищей, так как являются для синтеза некоторых важных липоидов. Чем больше двойных связей, тем ниже температура плавления жира. Ненасыщенные жирные кислоты делают жиры более жидкими. Их много содержится в растительном масле.

Функции жиров:

·Нейтральные жиры (триглицериды):

oявляются важнейшим источником энергии. При окислении 1 г вещества выделяется максимальное по сравнению с окислением белков и углеводов количество энергии. За счёт окисления нейтральных жиров образуется 50% всей энергии в организме;

oсоставляют основную массу животной пищи и липидов организма (10-20% тела);

oявляются компонентом структурных элементов клетки - ядра, цитоплазмы, мембраны;

oдепонированные в подкожной клетчатке, предохраняют организм от потерь тепла, а окружающие внутренние органы - от механических повреждений. Физиологическое допонирование нейтральных жиров выполняют липоциты, накопление которых происходит в подкожной жировой клетчатке, сальнике, жировых капсулах различных органов. Увеличение массы тела на 20-25% против нормы считается предельно допустимой физиологической границей.

·Фосфо- и гликолипиды:

oвходят в состав всех клеток организма (клеточные липиды), особенно нервных;

oявляются повсеместным компонентом биологических мембран организма;

oсинтезируются в печени и кишечной стенке, при этом печень определяет уровень фосфолипидов во всем организме, поскольку выделение фосфолипидов в кровь происходит только в печени;

·Бурый жир:

oпредставляет собой особую жировую ткань, расположенную в области шеи и верхней части спины у новорожденных и грудных детей и составляет у них около 1-2% от всей массы тела. В небольшом количестве (0,1-0,2% от массы тела) бурый жир имеется и у взрослого человека;

oспособен давать в 20 и более раз больше тепла (на единице массы его ткани), чем обычная жировая ткань;

oнесмотря на минимальное содержание в организме способен генерировать 1/3 всего образующегося в организме тепла;

oиграет важную роль в адаптации организма к низким температурам;

·Жирные кислоты:

oявляются основными продуктами гидролиза липидов в кишечнике. Большую роль в процессе всасывание жирных кислот играют желчь и характер питания;

oчрезвычайно важны для нормальной жизнедеятельности организма, к незаменимым жирным кислотам, которые не синтезируются организмом, относятся олеиновая, линолевая, линоленовая и арахидовая кислоты (суточная потребность 10-12 г).

§Линолевая и лоноленовая кислоты содержаться в растительных жирах, арахидовая - только в животных;

§Дефицит незаменимых жирных кислот в пище приводит к замедлению роста и развития организма, снижению репродуктивной функции и различным поражениям кожи. Способность тканей к утилизации жирных кислот ограничена их нерастворимостью в воде, большими размерами молекул а также структурными особенностями клеточных мембран самих тканей. Вследствие этого значительная часть жирных кислот связывается липоцитами жировой ткани и депонируется.

·Сложные жиры:

oфосфатиды и стерины - способствуют поддержанию постоянного состава цитоплазмы нервных клеток, синтезу половых гормонов и гормонов коркового вещества надпочечников, образованию некоторых витаминов (например, витамин D).


2.2 Переваривание и всасывание жиров в организме


Переваривание жира в организме человека происходит в тонком кишечнике. Жиры предварительно с помощью желчных кислот превращается в эмульсию. В процессе эмульгирования крупные капли жира превращаются в мелкие, что значительно увеличивает их суммарную поверхность. Ферменты сока поджелудочной железы - липазы, являясь белками, не могут проникать внутрь капель жира и расщепляют только молекулы жира, находящиеся на поверхности. Под действием липазы жир путем гидролиза расщепляется до глицерина и жирных кислот.

Поскольку в пище присутствуют разнообразные жиры, то в результате их переваривания образуется большое количество разновидностей жирных кислот.

Продукты расщепления жира всасываются слизистой тонкого кишечника. Глицерин растворим в воде, поэтому его всасывание происходит легко. Жирные кислоты, нерастворимые в воде, всасываются виде комплексов с желчными кислотами. В клетках тонкой кишки холеиновые кислоты распадаются на жирные и желчные кислоты. Желчные кислоты из стенки тонкого кишечника поступают в печень и затем снова выделяются в полость тонкого кишечника.

Освободившиеся жирные кислоты в клетках стенки тонкого кишечника вновь соединяются с глицерином, в результате чего вновь образуется молекула жира. Но в этот процесс вступают только жирные кислоты, входящие в состав жира человека. Таким образом, синтезируется человеческий жир. Такая перестройка пищевых жирных кислот в собственные жиры называется ресинтезом жира.

Ресинтезированные жиры по лимфатическим сосудам минуя печень поступают в большой круг кровообращения и откладываются в запас в жировых депо. Главные жировые депо организма располагаются в подкожной жировой клетчатке, большом и малом сальниках, околопочечной капсуле. Находящиеся здесь жиры могут переходить в кровь и, поступая в ткани, подвергаются там окислению, т.е. используются как энергетический материал.

Жир используется организмом как богатый источник энергии. При распаде 1 г жира в организме освобождается энергии в два с лишним раза больше, чем при распаде такого же количества белков или углеводов. Жиры входят и в состав клеток (цитоплазма, ядро, клеточные мембраны), где их количество устойчиво и постоянно. Скопления жира могут выполнять и другие функции. Например, подкожный жир препятствует усиленной отдаче тепла, околопочечный жир предохраняет почку от ушибов и т. д.

Недостаток жиров в пище нарушает деятельность центральной нервной системы и органов размножения, снижает выносливость к различным заболеваниям.


3 Регуляция обменов жиров


Регуляция жирового обмена в организме происходит под руководством центральной нервной системы. Очень сильное влияние на жировой обмен оказывают наши эмоции. Под действием различных сильных эмоций в кровь поступают вещества, которые активизируют или замедляют жировой обмен веществ в организме. По этим причинам надо принимать пищу в спокойном состоянии сознания.

Нарушение жирового обмена может произойти при регулярном недостатке в пище витаминов А и В.

Процесс образования, отложения и мобилизации из депо жира регулируется нервной и эндокринной системами, а также тканевыми механизмами и тесно связаны с углеводным обменом. Так, повышение концентрации глюкозы в крови уменьшает распад триглицеридов и активизирует их синтез. Понижение концентрации глюкозы в крови, наоборот, тормозит синтез триглицеридов и усиливает их расщепление. Таким образом, взаимосвязь жирового и углеводного обменов направлена на обеспечение энергетических потребностей организма. При избытке углеводов в пище триглицериды депонируются в жировой ткани, при нехватке углеводов происходит расщепление триглицеридов с образованием неэстерифицнрованных жирных кислот, служащих источником энергии.

Ряд гормонов оказывает выраженное влияние на жировой обмен. Сильным жиромобилизирующим действием обладают гормоны мозгового слоя надпочечников - адреналин и норадреналин, поэтому длительная адреналинемия сопровождается уменьшением жирового депо. Соматотропный гормон гипофиза также обладает жиромобилизирующим действием. Аналогично действует тироксин - гормон щитовидной железы, поэтому гиперфункция щитовидной железы сопровождается похуданием.

Наоборот, тормозят мобилизацию жира глюкокортикоиды - гормоны коркового слоя надпочечника, вероятно, вследствие того, что они несколько повышают уровень глюкозы в крови.

Имеются данные, свидетельствующие о возможности прямых нервных влияний на обмен жиров. Симпатические влияния тормозят синтез триглицеридов и усиливают их распад. Парасимпатические влияния, наоборот, способствуют отложению жира.

Нервные влияния на жировой обмен контролируются гипоталамусом. При разрушении вентромедиальных ядер гипоталамуса развиваются длительное повышение аппетита и усиленное отложение жира. Раздражение вентромедиальных ядер, напротив, ведет к потере аппетита и исхуданию.

В табл. 11.2 приведены сводные данные о влиянии ряда факторов на мобилизацию жирных кислот <#"276" src="doc_zip1.jpg" />


Глава 3. Обмен углеводов


В течение жизни человек съедает около 10 т углеводов. Углеводы поступают в организм главным образом в виде крахмала. Расщепившись в пищеварительном тракте до глюкозы, углеводы всасываются в кровь и усваиваются клетками. Особенно богата углеводами растительная пища: хлеб, крупы, овощи, фрукты. Продукты животного происхождения (за исключением молока) содержат мало углеводов.

Углеводы - главный источник энергии, особенно при усиленной мышечной работе. Больше половины энергии организм взрослых людей получает за счет углеводов. Конечные продукты обмена углеводов - углекислый газ и вода.

Обмен углеводов занимает центральное место в обмене веществ и энергии. Сложные углеводы пищи подвергаются расщеплению в процессе пищеварения до моносахаридов, в основном глюкозы. Моносахариды всасываются из кишечника в кровь и доставляются в печень и другие ткани, где включаются в промежуточный обмен. Часть поступившей глюкозы в печени и скелетных мышцах откладывается в виде гликогена либо используется для других пластических процессов. При избыточном поступлении углеводов с пищей они могут превращаться в жиры и белки. Другая часть глюкозы подвергается окислению с образованием АТФ и выделением тепловой энергии. В тканях возможны два основных механизма окисления углеводов - без участия кислорода (анаэробно) и с его участием (аэробно).


3.1 Углеводы и их функции


Углеводы - органические соединения, содержащиеся во всех тканях организма в свободном виде в соединениях с липидами и белками и являющиеся основным источникам энергии. Функции углеводов в организме:

·Углеводы являются непосредственным источником энергии для организма.

·Участвуют в пластических процессах метаболизма.

·Входят в состав протоплазмы, субклеточных и клеточных структур, выполняют опорную функцию для клеток.

Углеводы делят на 3 основных класса: моносахариды, дисахариды и полисахариды. Моносахариды - углеводы, которые не могут быть расщеплены до более простых форм (глюкоза, фруктоза). Дисахариды - углеводы, которые пригидролизе дают две молекулы моносахаров (сахароза, лактоза). Полисахариды - углеводы, которые при гидролизе дают более шести молекул моносахаридов (крахмал, гликоген, клетчатка).


3.2 Расщепление углеводов в организме


Расщепление сложных углеводов пищи начинается в ротовой полости под действием ферментов амилазы и мальтазы слюны. Оптимальная активность этих ферментов проявляется в щелочной среде. Амилаза расщепляет крахмал и гликоген, а мальтаза -- мальтозу. При этом образуются более низкомолекулярные углеводы -- декстрины, частично -- мальтоза и глюкоза.

В пищеварительном тракте полисахариды (крахмал, гликоген; клетчатка и пектин в кишечнике не перевариваются) и дисахариды под влиянием ферментов подвергаются расщеплению до моносахаридов (глюкоза и фруктоза) которые в тонком кишечнике всасываются в кровь. Значительная часть моносахаридов поступает в печень и в мышцы и служат материалом для образования гликогена. Процесс всасывания моносахаридов в кишечнике регулируется нервной и гормональной системами. Под действием нервной системы может измениться проницаемость кишечного эпителия, степень кровоснабжения слизистой оболочки кишечной стенки и скорость движения ворсинок, в результате чего меняется скорость поступления моносахаридов в кровь воротной вены. В печени и мышцах гликоген откладывается в резерв. По мере необходимости гликоген мобилизуется из депо и превращается в глюкозу, которая поступает к тканям и используется ими в процессе жизнедеятельности.

Гликоген печени представляет собой резервный, т. е. отложенный в запас, углевод. Количество его может достигать у взрослого человека 150-200 г. Образование гликогена при относительно медленном поступлении глюкозы в кровь происходит достаточно быстро, поэтому после введения небольшого количества углеводов повышения содержания глюкозы в крови (гипергликемия) не наблюдается. Если же в пищеварительный тракт поступает большое количество легко расщепляющихся и быстро всасывающихся углеводов, содержание глюкозы в крови быстро увеличивается. Развивающуюся при этом гипергликемию называют алиментарной, иначе говоря - пищевой. Ее результатом является глюкозурия, т. е. выделение глюкозы с мочой <#"justify">3.3 Регуляция обмена углеводов


Основным параметром регулирования углеводного обмена является поддержание уровня глюкозы в крови в пределах 4,4-6,7 ммоль/л. Изменение содержания глюкозы в крови воспринимается глюкорецепторами, сосредоточенными в основном в печени и сосудах, а также клетками вентромедиального отдела гипоталамуса. Показано участие ряда отделов ЦНС в регуляции углеводного обмена.

Роль коры головного мозга в регуляции уровня глюкозы крови иллюстрирует развитие гипергликемии у студентов во время экзамена, у спортсменов перед ответственными соревнованиями, а также при гипнотическом внушении. Центральным звеном регуляции углеводного и других видов обмена и местом формирования сигналов, управляющих уровнем глюкозы, является гипоталамус. Отсюда регулирующие влияния реализуются вегетативными нервами и гуморальным путем, включающим эндокринные железы.

Выраженным влиянием на углеводный обмен обладает инсулин - гормон, вырабатываемый в-клетками островковой ткани поджелудочной железы. При введении инсулина уровень глюкозы в крови снижается. Это происходит за счет усиления инсулином синтеза гликогена в печени и мышцах и повышения потребления глюкозы тканями организма. Инсулин является единственным гормоном, понижающим уровень глюкозы в крови, поэтому при уменьшении секреции этого гормона развиваются стойкая гипергликемия и последующая глюкозурия (сахарный диабет, или сахарное мочеизнурение).

Увеличение уровня глюкозы в крови возникает при действии нескольких гормонов. Это глюкагон, продуцируемый альфа-клетками островковой ткани поджелудочной железы; адреналин - гормон мозгового слоя надпочечников; глюкокортикоиды - гормоны коркового слоя надпочечника; соматотропный гормон гипофиза; тироксин и трийодтиронин - гормоны щитовидной железы. В связи с однонаправленностью их влияния на углеводный обмен и функциональным антагонизмом по отношению к эффектам инсулина эти гормоны часто объединяют понятием «контринсулярные гормоны».


Глава 4. Печень, ее роль в обмене веществ


1 Структура печени


Печень (hepar) - непарный орган брюшной полости, самая крупная железа в организме человека. Печень человека весит полтора-два килограмма. Это самая крупная железа тела. В брюшной полости она занимает правое и часть левого подреберий. Печень плотна на ощупь, но очень эластична: соседние органы оставляют на ней хорошо заметные следы. Даже внешние причины, например механическое давление, могут вызвать изменение формы печени. В печени происходит обезвреживание токсических веществ, поступающих в нее с кровью из желудочно-кишечного тракта; в ней синтезируются важнейшие белковые вещества крови, образуются гликоген, желчь; печень участвует в лимфообразовании, играет существенную роль в обмене веществ. Вся печень состоит из множества призматических долек размером от одного до двух с половиной миллиметров. Каждая отдельная долька содержит все структурные элементы целого органа и представляет собой как бы печень в миниатюре. Желчь образуется печенью непрерывно, но в кишечник она поступает только по мере надобности. В определенные периоды времени, желчный проток закрывается.

Очень своеобразна кровеносная система печени. Кровь притекает к ней не только по печеночной артерия, идущей от аорты, но и по воротной вене, которая собирает венозную кровь из органов брюшной полости. Артерии и вены густо оплетают печеночные клетки. Тесный контакт кровеносных и желчных капилляров, а также то обстоятельство, что в печени кровь течет медленнее, чем в других органах, способствуют более полному обмену веществ между кровью и клетками печени. Печеночные вены постепенно соединяются и впадают в крупный коллектор - нижнюю полую вену, в которую вливается вся кровь, прошедшая через печень.

Печень является одним из немногих органов, способных восстанавливать первоначальный размер даже при сохранении всего лишь 25 % нормальной ткани. Фактически регенерация происходит, но очень медленно, а быстрый возврат печени к своим первоначальным размерам происходит скорее из-за увеличения объёма оставшихся клеток.


4.2 Функции печени


Печень является одновременно органом пищеварения, кровообращения и обмена веществ всех видов, включая гормональный. Она выполняет более 70 функций. Рассмотрим основные из них. К важнейшим тесно связанным между собой функциям печени относятся общеметаболическая (участие в межуточном обмене), экскреторная и барьерная. Экскреторная функция печени обеспечивает выделение из организма с желчью более 40 соединений, как синтезированных самой печени, так и захваченных ею из крови. В отличие от почек она экскретирует также вещества с высокой молекулярной массой и не растворимые в воде. К числу веществ, экскретируемых печени в составе желчи, относятся желчные кислоты, холестерин, фосфолипиды, билирубин, многие белки, медь и др. Образование желчи начинается в гепатоците, где одни компоненты ее вырабатываются (например, желчные кислоты), а другие - захватываются из крови и концентрируются. Здесь же образуются парные соединения (конъюгация с глюкуроновой кислотой и другими соединениями), что способствует повышению водорастворимости исходных субстратов. Из гепатоцитов желчь поступает в систему желчных протоков, где происходит дальнейшее ее формирование за счет секреции или реабсорбции воды, электролитов и некоторых низкомолекулярных соединений.

Барьерная функция печени состоит в предохранении организма от повреждающего действия чужеродных агентов и продуктов метаболизма, сохранении гомеостаза. Барьерная функция осуществляется за счет защитного и обезвреживающего действия печени. Защитное действие обеспечивается неспецифическими и специфическими (иммунными) механизмами. Первые связаны прежде всего со звездчатыми ретикулоэндотелиоцитами, представляющими собой важнейшую составную часть (до 85%) системы мононуклеарных фагоцитов. Специфические защитные реакции осуществляются в результате деятельности лимфоцитов лимфатических узлов печени и синтезируемых ими антител. Обезвреживающее действие печени обеспечивает химическое превращение токсических продуктов, как поступающих извне, так и образующихся в ходе межуточного обмена. В результате метаболических превращений в печени (окисление, восстановление, гидролиз, конъюгация с глюкуроновой кислотой или другими соединениями) уменьшается токсичность этих продуктов и (или) повышается их водорастворимость, что делает возможным выделение их из организма.


4.3 Роль печени в обмене веществ


Рассматривая обмен белков, жиров и углеводов мы не раз затрагивали печень. Печень является важнейшим органом, осуществляющим синтез белков. В ней образуется весь альбумин крови, основная масса факторов свертывания, белковые комплексы (гликопротеиды, липопротеиды) и др. В печени происходит и наиболее интенсивный распад белков. Она участвует в обмене аминокислот, синтезе глютамина и креатина; почти исключительно в печени происходит образование мочевины. Существенную роль играет печень в обмене липидов. В основном в ней синтезируются триглицериды, фосфолипиды и желчные кислоты, здесь образуется значительная часть эндогенного холестерина, происходит окисление триглицеридов и образование ацетоновых тел; выделяемая печенью желчь имеет важное значение для расщепления и всасывания жиров в кишечнике. Печень активно участвует в межуточном обмене углеводов: в ней происходит образование сахара, окисление глюкозы, синтез и распад гликогена. Печень является одним из важнейших депо гликогена в организме. Участие печени в пигментном обмене заключается в образовании билирубина, захвате его из крови, конъюгации и экскреции в желчь. Печень участвует в обмене биологически активных веществ - гормонов, биогенных аминов, витаминов. Здесь образуются активные формы некоторых из этих соединений, происходит их депонирование, инактивация. Тесно связан с печени и обмен микроэлементов, т.к. печень синтезирует белки, транспортирующие в крови железо, медь и осуществляет функцию депо для многих из них.

На деятельность печени влияют другие органы нашего тела, а самое главное, она находится под постоянным и неослабным контролем нервной системы. Под микроскопом можно увидеть, что нервные волокна густо оплетают каждую печеночную дольку. Но нервная система оказывает на печень не только прямое влияние. Она координирует работу других органов, воздействующих на печень. Это относится в первую очередь к органам внутренней секреции. Можно считать доказанным, что центральная нервная система регулирует работу печени - непосредственно или через другие системы организма. Она устанавливает интенсивность и направленность процессов обмена веществ печени в соответствии с потребностями организма в данный момент. В свою очередь биохимические процессы в клетках печени вызывают раздражение чувствительных нервных волокон и тем самым влияют на состояние нервной системы.



Белки, жиры и углеводы очень важны нашему организму. Если кратко, белки - основа всех клеточных структур, основной строительный материал, жиры - энергетический и пластический материал, углеводы - источник энергии в организме. Правильное их соотношение и своевременное употребление - это правильное рациональное питание, а это в свою очередь здоровый народ.

Печень же выполняет сложную и многообразную работу, которая очень важна для здорового обмена веществ. Когда пищевые вещества поступают в печень, они преобразуются в новое химическое строение, эти переработанные вещества направляются ко всем органам и тканям, где они превращаются в клетки нашего тела, а часть их откладывается в печени, образуя здесь своеобразное депо. В случае надобности они снова поступают в кровь. Так печень участвует в обмене каждого пищевого вещества, и если ее убрать человек сразу погибнет.


Список литературы:


1.А.А. Маркосян: Физиология;

2.В.М. Покровский: Физиология человека 2003г.

Панов Степан статья: Обмен белков в организме человека 2010г.

Википедия

Л.А. Чистович: Физиология человека 1976г

Н.И. Волков, Биохимия мышечной деятельности 2000. - 504 с.

Ленинджер, А. Основы биохимии / А.Ленинджер. - М.: Мир, 1985.

V. Kumar: Патанатомия заболеваний Роббинса и Котрана 2010 г


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Печень принимает активное участие в синтезе и преобразовании белков (протеины). Не исключено, что именно эта функция относится к одной из жизненно важных.

У человека с массой тела 70 кг суммарное количество белка составляет около 14 кг, протеолиз и одновременный протеосинтез - 300-500 г/сут. Из аминокислот пищевых белков синтезируется 70-100 г белка, т. е. 50% всего синтеза белка из аминокислот; 30% протеина синтезируется из аминокислот деградирующего белка клеток, 10% - из деградирующего белка ферментов, 1% - из белков плазмы; 20% белка, синтезируемого печенью, она использует в собственных цел^х, 80% - для других органов и тканей организма. Регулирующее влияние на синтез протеина оказывает концентрация аминокислот в сыиоротке щюви. Синтез активизируется гормонами

щитовидной железы, глюкокортикоидами и, возможно, инсулином, Тормозит этот вид синтеза глкжагон.

Разрушение белка в печени происходит быстро. Протеазы и пептидазы лизосом осуществляют протеолиз в кислой среде без особой видовой специфичности. Протеолитические ферменты цитоплазмы активны в нейтральной среде и отличаются большей видовой специфичностью. В экспериментах на собаках доказано, что при употреблении богатой белком пищи 57% азотистых соединений превращается в мочевину, 6% используется в плазме крови, 4% идет на белки печени и 23% - на периферийное (внепеченочное) потребление аминокислот.

Печень синтезирует почти 100% альбуминов, 90% о,-глобулинов, 75% а 2 -глобулинов и 50% /3-глобулинов.

В норме участие печени в синтезе гамма-глобулинов относительно невелико. При патологических состояниях возрастает роль звездчатых ретикулоэндотелиоцитов в производстве этого белка; все более важное значение придается плазматическим клеткам воспалительных инфильтратов печени.

1.2.1. Белки, включая иммуноглобулины

Альбумины, Ежедневно печень синтезирует 12-15 г альбуминов. Период полураспада альбумина 7-26 дней. Он играет важную роль в поддержании нормального онкотического давления крови. Гипоальбуминемия способствует развитию отеков.

К альбуминам относится значительная часть транспортных бел-ков-лигандинов. Альбуминами являются также некоторые белки ферментов, в частности глутатионтрансфераза, осуществляющая важную роль в транспорте внутри гепатоцита. Эта лигандная функция глутатионтрансферазы касается неконъюгированного билирубина, холестерина, свободных жирных кислот, гормонов, лекарств. Нарушение транспортной функции альбуминов изучено недостаточно.

Альфа- 1-глобулин. Период полураспада,-глобулина 8- 10 дней. После гепатэктомии в первую очередь снижается содержание белков. К этому виду белков относится большое количество липопротеидов и гликопротеидов (кислый а,-гликопротеид - оро-зомукоид, ег,-липопротеид, г антитрипсин).

А л ьфа-2- глобулин (а 7 -глобулин). К этому виду белков относится большое количество гликопротеидов и липопротеидов (це-рулоплазмин 2 -антитромбин, гаптоглобин, 2 -макроглобулин и др.).

Бета-глобулин < fi -глобулин). В £-фракцию входят транс-феррин, гемапексин, ^ 2 ~микроглобулин и др. Повышение концентрации /3 -глобулинов наблюдается при холестазе.

К а г ~ и ^-глобулинам относятся металлопротеиды, играющие

важную биологическую роль. Хорошо изучены белки, связанные с

обменом железа (трансферрин, ферритин, сидерофилин) и меди

(церулоплазмин). ч

Металлопротеиды группы железа связаны с развитием гемохроматоза. При этом важную роль играет трансферрин -

гликопротеид, относящийся к транспортным белкам, регулирующий поступление железа в клетку. При гемохроматозе насыщение железом трансферрина резко увеличивается.

ферритин - депонирующий белок, обеспечивающий и контролирующий поддержание определенного содержания железа в клетке. В нормальных условиях он предотвращает избыточное накопление металла в клетке. При избыточном поступлении железа и ряда других нарушений его обмена концентрация ферритина в сыворотке крови повышается. Это наблюдается при гемохроматозе, гепатоцел-люлярном раке, циррозе и остром некрозе печени. Снижение концентрации ферритина ниже 10 нг/100 мл обычно указывает на дефицит железа в организме.

Повышение концентраций железа в печени наблюдается при заболеваниях, протекающих с гиперферритинемией, а также при поздней кожной порфирии, спру, голодании, гемолитических анемиях, повторных гемотрансфузиях, после наложения портокаваль-иых анастомозов.

Металлопротеиды группы меди. Около 90% меди сыворотки крови связано с церулоплазмином, около 10% - с сывороточными альбуминами (непрочно). Именно непрочно связанная с альбумином медь захватывается синусоидальным полюсом гепа-тоцита. Часть ее поступает в гладкий эндоплазмзтический ретику-лум, где соединяется с синтезированной прежде в рибосомах белковой частью церулоплазмина и образует полноценный церулоплазмин. Другая часть поступившей в гепатоцит меди экскретируется ли-зосомами в желчь и далее в кишечник.

В случаях развития болезни Вильсона-Коновалова (гепатоце-ребральная дистрофия) нарушается как синтез церулоплазмина, так и эвакуация меди лизосомами. Причинно-следственные взаимоотношения между этими процессами до сих пор четко не ус тановлены. Нарастание концентрации меди, не связанной с церулоплазмином, ведет к выделению меди почками. При этом молекулы меди выделяются вместе с аминокислотами, что влечет за собой снижение концентрации меди в сыворотке крови и уве личение количества аминокислот в моче. Снижение концентрации церулоплазмина в сыворотке крови наблюдается при болезни Вильсона-Коновалова.

Среди гликопротеидов в последнее время привлекает внимание фибронектин. Он синтезируется в основном печенью. В этом процессе участвуют звездчатые ретикулоэндотелиоциты. Фибронектин - компонент соединительной ткани, выполняет структурные функции, он расходуется в процессе выделения осколков гепатоцитов и других клеток. Недостаток фибронектина может способствовать микроэмболической обструкции легких и нарушению системной микроциркуляции.

Гамма-глобулины в основном представлены иммуноглобулинами, их период полураспада 20-30 дней.

Выделяют 5 классов иммуноглобулинов: IgA, IgG, IgD, IgE, IgM, Особенно заметно при заболеваниях печени меняются концентрации IgA, IgG и IgM сыворотки крови.

Иммуноглобулин G (IgG) - основной иммуноглобулин сыворотки крови - осуществляет защитные функции в отношении патогенных микроорганизмов и токсинов в сосудистом русле, а также в экстра-васкулярных пространствах, куда он свободно проникает.

Иммуноглобулин М (IgM - макроглобулин) находится в основном в сосудистом русле. Играет важную защитную роль при бак-териемиях и вирусемиях на ранней стадии инфекции.

Иммуноглобулин A (IgA) - сывороточный IgA - составляет менее 50% иммуноглобулина, содержащегося в организме человека. Большая часть этого иммуноглобулина содержится в секретах (молоко, желчь, слюна, слезная жидкость, секреты кишечного и респираторного тракта). Осуществляет защиту слизистых оболочек от патогенных микроорганизмов и потенциальных аутоаллергенов.

За сутки с желчью в кишечник выделяется 160-400 мг IgA-секретов. Это составляет около 10% общего количества IgA, обнаруживаемого за этот срок в кишечнике. Предполагается, что большая часть этого IgA синтезируется в слизистой оболочке желчных путей. Продуцируемый местно IgA играет важную роль в резистентности мельчайших желчных ходов к различным повреждениям.

Концентрации иммуноглобулинов сыворотки крови при ряде заболеваний печени подвержены колебаниям. Хронические активные гепатиты (ХАГ) и активные формы циррозов печени протекают с поли-клональной гипериммуноглобулинемией, т. е. при этих заболеваниях отмечается повышение содержания основных классов иммуноглобулинов (IgA, IgG, IgM), особенно одного из них. В частности, вирусные заболевания протекают в основном с повышением содержания IgM и IgG, алкогольные - IgA, первичный билиарный цирроз - IgM. У большинства подобных больных одновременно отмечается гипергаммагло-булинемия. Врожденные и приобретенные дефициты IgA нередко усугубляют тяжесть течения хронических прогрессирующих заболеваний печени, а также холестазов различного происхождения.

1.2.2. Обмен аминокислот, мочевины, аммиака и мочевой кислоты

Аминокислоты. Поддержание относительного постоянства аминокислотного состава крови является одной из важных функций печени.

При некоторых заболеваниях (например, гепатоцеребральная дистрофия) наблюдается повышенная гипераминоацидурия. При отдельных формах большой печеночной недостаточности выявляется повышение концентрации ряда аминокислот сыворотки крови - фенилаланина, тирозина, триптофана, метионина и одновременное снижение концентраций разветвленных аминокислот - вал и на, лейцина, изолейцина.

Эти изменения обусловлены особенностями разрушения различных групп аминокислот.

Первая группа - эссенциальные аминокислоты, за исключением разветвленных, разрушаются только в печени. К ним относятся

фенилаланин, триптофан, тирозин и метионин. Непосредственная причина подобного явления - падение концентраций ферментов: фенилаланингидроксилазы, триптофанпирролазы, содержащихся в гепатоцитах.

Вторая группа - разветвленные аминокислоты, разрушающиеся главным образом в мышцах (значительно меньше в печени). Причина уменьшения концентраций этих аминокислот в сыворотке крови больных циррозом печени, особенно после наложения порто-кавальных анастомозов, не вполне ясна. Возможно, гиперинсули-немия ведет к большему поглощению их мышцами.

Третья группа - неэссенциальные аминокислоты, разрушающиеся как в печени, так и в мышцах.

Мочевина. Образование мочевины происходит в основном в печени. Таким путем достигается превращение ядовитых осколков белковой молекулы (аминогрупп и др.) в практически нетоксичное вещество - мочевину.

На синтез 1 моля мочевины расходуется 2 моля бикарбоната, и таким образом снижается рН. Синтез мочевины относится к одной из устойчивых функций печени. В обычных условиях используется не более /ю потенциальной мощности печени. Поэтому снижение концентраций мочевины в сыворотке крови наблюдается нечасто. Эта закономерность касается суммарной продукции мочевины. Нарушение отдельных этапов ее синтеза может резко не нарушать суммарную концентрацию мочевины сыворотки крови, но приводить к увеличению концентраций токсичных продуктов, образующихся на отдельных этапах синтеза молекулы мочевины.

Подобные нарушения наблюдаются, например, при синдроме Рейя. Поражение митохондрий гепатоцитов и локализованных в них ферментов, участвующих в синтезе мочевины, ведет к резчай-шей гипераммониемии и развитию энцефалопатии.

Другим продуктом обезвреживания аммиака является глутамин. Синтез его осуществляется не только в печени. Отличие синтеза глутамина от синтеза мочевины заключается в том, что первый синтезируется и при низких концентрациях аммиака, тогда как вторая - только при достаточно высоких концентрациях аммиака.

При низком рН происходит расщепление глутамина, при высоком рН - энергичный синтез мочевины. Оба процесса направлены на стабилизацию уровня рН в нормальных условиях.

Высказывается мысль , что почки компенсируют в основном ацидоз, а печень - алкалоз.

Аммиак. При дезаминировании азотистых соединений, в первую очередь аминокислот, образуется аммиак. При разрушении 100 г белка образуется около 20 г аммиака. Под аммиаком подразумевается как неионизированный NH3, так и ионизированный NH4. Большие концентрации аммиака сыворотки крови и тканей обладают высокотоксическими свойствами, тогда как к нормальным концентрациям ЫНз организм адаптирован. Аммиак - один из видов сырья для синтеза мочевины.

Различают две основные причины гипераммониемии - избы-

точное поступление NH3 из кишечника и уменьшение преобразо вания аммиака в печени. В основном гипераммониемия наблюдается при заболеваниях печени, особенно тяжелых ( , синдром Рейя и др.). Несравненно реже наблюдаются врожденные дефекты ферментных систем, преобразующих аммиак (дефекты де-гидрогеназы лизина, метилмалонилмутазы и др.).

Мочевая кислота обычно образуется как конечный продукт об мена пуриновых соединений. Наиболее стабильная гиперурикемия наблюдается при подагре. Печень участвует в обмене пуринов, и при ряде заболеваний печени, в первую очередь алкогольных, наблюдается гиперурикемия. Чаще она следует за острой интоксикацией алкоголем. В повышенной продукции мочевой кислоты велика роль индукции таких ферментов гепатоцитов, как ксантиноксидаза и глутатионредуктаза.

Тема: "БИОХИМИЯ ПЕЧЕНИ"

1. Химический состав печени: содержание гликогена, липидов, белков, минеральный состав.

2. Роль печени в углеводном обмене: поддержание постоянной концентрации глюкозы, синтез и мобилизация гликогена, глюконеогенез, основные пути превращения глюкозо-6-фосфата, взаимопревращения моносахаридов.

3. Роль печени в обмене липидов: синтез высших жирных кислот, ацилглицеролов, фосфолипидов, холестерола, кетоновых тел, синтез и обмен липопротеинов, понятие о липотропном эффекте и липотропных факторах.

4. Роль печени в белковом обмене: синтез специфических белков плазмы крови, образование мочевины и мочевой кислоты, холина, креатина, взаимопревращения кетокислот и аминокислот.

5. Метаболизм алкоголя в печени, жировое перерождение печени при злоупотреблении алкоголем.

6. Обезвреживающая функция печени: стадии (фазы) обезвреживания токсических веществ в печени.

7. Обмен билирубина в печени. Изменения содержания желчных пигментов в крови, моче и кале при различных видах желтух (надпечёночной, паренхиматозной, обтурационной).

8. Химический состав желчи и её роль; факторы, способствующие образованию желчных камней.

31.1. Функции печени.

Печень является органом, занимающим уникальное место в обмене веществ. В каждой печёночной клетке содержится несколько тысяч ферментов, катализирующих реакции многочисленных метаболических путей. Поэтому печень выполняет в организме целый ряд метаболических функций. Важнейшими из них являются:

  • биосинтез веществ, которые функционируют или используются в других органах. К этим веществам относятся белки плазмы крови, глюкоза, липиды, кетоновые тела и многие другие соединения;
  • биосинтез конечного продукта азотистого обмена в организме - мочевины;
  • участие в процессах пищеварения - синтез желчных кислот, образование и экскреция желчи;
  • биотрансформация (модификация и конъюгация) эндогенных метаболитов, лекарственных препаратов и ядов;
  • выделение некоторых продуктов метаболизма (желчные пигменты, избыток холестерола, продукты обезвреживания).

31.2 . Роль печени в обмене углеводов.

Основная роль печени в обмене углеводов заключается в поддержании постоянного уровня глюкозы в крови. Это осуществляется путём регуляции соотношения процессов образования и утилизации глюкозы в печени.

В клетках печени содержится фермент глюкокиназа , катализирующий реакцию фосфорилирования глюкозы с образованием глюкозо-6-фосфата. Глюкозо-6-фосфат является ключевым метаболитом углеводного обмена; основные пути его превращения представлены на рисунке 1.

31.2.1. Пути утилизации глюкозы. После приёма пищи большое количество глюкозы поступает в печень по воротной вене. Эта глюкоза используется прежде всего для синтеза гликогена (схема реакций приводится на рисунке 2). Содержание гликогена в печени здоровых людей обычно составляет от 2 до 8% массы этого органа.

Гликолиз и пентозофосфатный путь окисления глюкозы в печени служат в первую очередь поставщиками метаболитов-предшественников для биосинтеза аминокислот, жирных кислот, глицерола и нуклеотидов. В меньшей степени окислительные пути превращения глюкозы в печени являются источниками энергии для обеспечения биосинтетических процессов.

Рисунок 1. Главные пути превращения глюкозо-6-фосфата в печени. Цифрами обозначены: 1 - фосфорилирование глюкозы; 2 - гидролиз глюкозо-6-фосфата; 3 - синтез гликогена; 4 - мобилизация гликогена; 5 - пентозофосфатный путь; 6 - гликолиз; 7 - глюконеогенез.

Рисунок 2. Схема реакций синтеза гликогена в печени.

Рисунок 3. Схема реакций мобилизации гликогена в печени.

31.2.2. Пути образования глюкозы. В некоторых условиях (при голодании низкоуглеводной диете, длительной физической нагрузке) потребность организма в углеводах превышает то количество, которое всасывается из желудочно-кишечного тракта. В таком случае образование глюкозы осуществляется с помощью глюкозо-6-фосфатазы , катализирующей гидролиз глюкозо-6-фосфата в клетках печени. Непосредственным источником глюкозо-6-фосфата служит гликоген. Схема мобилизации гликогена представлена на рисунке 3.

Мобилизация гликогена обеспечивает потребности организма человека в глюкозе на протяжении первых 12 - 24 часов голодания. В более поздние сроки основным источником глюкозы становится глюконеогенез - биосинтез из неуглеводных источников.

Основными субстратами для глюконеогенеза служат лактат, глицерол и аминокислоты (за исключением лейцина). Эти соединения сначала превращаются в пируват или оксалоацетат - ключевые метаболиты глюконеогенеза.

Глюконеогенез - процесс, обратный гликолизу. При этом барьеры, создаваемые необратимыми реакциями гликолиза, преодолеваются при помощи специальных ферментов, катализирующих обходные реакции (см. рисунок 4).

Из других путей обмена углеводов в печени следует отметить превращение в глюкозу других пищевых моносахаридов - фруктозы и галактозы.

Рисунок 4. Гликолиз и глюконеогенез в печени.

Ферменты, катализирующие необратимые реакции гликолиза: 1 - глюкокиназа; 2 - фосфофруктокиназа; 3 - пируваткиназа.

Ферменты, катализирующие обходные реакции глюконеогенеза: 4 -пируваткарбоксилаза; 5 - фосфоенолпируваткарбоксикиназа; 6 -фруктозо-1,6-дифосфатаза; 7 - глюкозо-6-фосфатаза.

31.3. Роль печени в обмене липидов.

В гепатоцитах содержатся практически все ферменты, участвующие в метаболизме липидов. Поэтому паренхиматозные клетки печени в значительной степени контролируют соотношение между потреблением и синтезом липидов в организме. Катаболизм липидов в клетках печени протекает главным образом в митохондриях и лизосомах, биосинтез - в цитозоле и эндоплазматическом ретикулуме. Ключевым метаболитом липидного обмена в печени является ацетил-КоА, главные пути образования и использования которого показаны на рисунке 5.

Рисунок 5. Образование и использование ацетил-КоА в печени.

31.3.1. Метаболизм жирных кислот в печени. Пищевые жиры в виде хиломикронов поступают в печень через систему печёночной артерии. Под действием липопротеинлипазы, находящейся в эндотелии капилляров, они расщепляются до жирных кислот и глицерола. Жирные кислоты, проникающие в гепатоциты, могут подвергаться окислению, модификации (укорочению или удлинению углеродной цепи, образованию двойных связей) и использоваться для синтеза эндогенных триацилглицеролов и фосфолипидов.

31.3.2. Синтез кетоновых тел. При β-окислении жирных кислот в митохондриях печени образуется ацетил-КоА, подвергающийся дальнейшему оки-слению в цикле Кребса. Если в клетках печени имеется дефицит оксалоацетата (например, при голодании, сахарном диабете), то происходит конденсация ацетильных групп с образованием кетоновых тел (ацетоацетат,β-гидроксибутират, ацетон). Эти вещества могут служить энергетическими субстратами в других тканях организма (скелетные мышцы, миокард, почки, при длительном голодании - головной мозг). Печень не утилизирует кетоновые тела. При избытке кетоновых тел в крови развивается метаболический ацидоз. Схема образования кетоновых тел - на рисунке 6.

Рисунок 6. Синтез кетоновых тел в митохондриях печени.

31.3.3. Образование и пути использования фосфатидной кислоты. Общим предшественником триацилглицеролов и фосфолипидов в печени является фосфатидная кислота. Она синтезируется из глицерол-3-фосфата и двух ацил-КоА - активных форм жирных кислот (рисунок 7). Глицерол-3-фосфат может образоваться либо из диоксиацетонфосфата (метаболит гликолиза), либо из свободного глицерола (продукт липолиза).

Рисунок 7. Образование фосфатидной кислоты (схема).

Для синтеза фосфолипидов (фосфатидилхолина) из фосфатидной кислоты необходимо поступление с пищей достаточного количества липотропных факторов (веществ, препятствующих развитию жировой дистрофии печени). К этим факторам относятся холин, метионин, витамин В12 , фолиевая кислота и некоторые другие вещества. Фосфолипиды включаются в состав липопротеиновых комплексов и принимают участие в транспорте липидов, синтезированных в гепатоцитах, в другие ткани и органы. Недостаток липотропных факторов (при злоупотреблении жирной пищей, хроническом алкоголизме, сахарном диабете) способствует тому, что фосфатидная кислота используется для синтеза триацилглицеролов (нерастворимых в воде). Нарушение образования липопротеинов приводит к тому, что избыток ТАГ накапливается в клетках печени (жировая дистрофия) и функция этого органа нарушается. Пути использования фосфатидной кислоты в гепатоцитах и роль липотропных факторов показаны на рисунке 8.

Рисунок 8. Использование фосфатидной кислоты для синтеза триацилглицеролов и фосфолипидов. Липотропные факторы обозначены знаком * .

31.3.4. Образование холестерола. Печень является основным местом синтеза эндогенного холестерола. Это соединение необходимо для построения клеточных мембран, является предшественником желчных кислот, стероидных гормонов, витамина Д3 . Первые две реакции синтеза холестерола напоминают синтез кетоновых тел, но протекают в цитоплазме гепатоцита. Ключевой фермент синтеза холестерола - β -гидрокси- β -метилглутарил-КоА-редуктаза (ГМГ-КоА-редуктаза) ингибируется избытком холестерола и желчными кислотами по принципу отрицательной обратной связи (рисунок 9).

Рисунок 9. Синтез холестерола в печени и его регуляция.

31.3.5. Образование липопротеинов. Липопротеины - белково-липидные комплексы, в состав которых входят фосфолипиды, триацилглицеролы, холестерол и его эфиры, а также белки (апопротеины). Липопротеины транспортируют нерастворимые в воде липиды к тканям. В гепатоцитах образуются два класса липопротеинов - липопротеины высокой плотности (ЛПВП) и липопротеины очень низкой плотности (ЛПОНП).

31.4. Роль печени в обмене белков.

Печень является органом, регулирующим поступление азотистых веществ в организм и их выведение. В периферических тканях постоянно протекают реакции биосинтеза с использованием свободных аминокислот, либо выделение их в кровь при распаде тканевых белков. Несмотря на это, уровень белков и свободных аминокислот в плазме крови остаётся постоянным. Это происходит благодаря тому, что в клетках печени имеется уникальный набор ферментов, катализирующих специфические реакции обмена белков.

31.4.1. Пути использования аминокислот в печени. После приёма белковой пищи в клетки печени по воротной вене поступает большое количество аминокислот. Эти соединения могут претерпевать в печени ряд превращений, прежде чем поступить в общий кровоток. К этим реакциям относятся (рисунок 10):

а) использование аминокислот для синтеза белков;

б) трансаминирование - путь синтеза заменимых аминокислот; осуществляет также взаимосвязь обмена аминокислот с глюконеогенезом и общим путём катаболизма;

в) дезаминирование - образование α-кетокислот и аммиака;

г) синтез мочевины - путь обезвреживания аммиака (схему см. в разделе "Обмен белков");

д) синтез небелковых азотсодержащих веществ (холина, креатина, никотинамида, нуклеотидов и т.д.).

Рисунок 10. Обмен аминокислот в печени (схема).

31.4.2. Биосинтез белков. В клетках печени синтезируются многие белки плазмы крови: альбумины (около 12 г в сутки), большинство α- и β-глобулинов, в том числе транспортные белки (ферритин, церулоплазмин, транскортин, ретинолсвязывающий белок и др.). Многие факторы свёртывания крови (фибриноген, протромбин, проконвертин, проакцелерин и др.) также синтезируются в печени.

31.5. Обезвреживающая функция печени.

В печени обезвреживаются неполярные соединения различного происхождения, в том числе эндогенные вещества, лекарственные препараты и яды. Процесс обезвреживания веществ включает две стадии (фазы):

1) фаза модификации - включает реакции окисления, восстановления, гидролиза; для ряда соединений необязательна;

2) фаза конъюгации - включает реакции взаимодействия веществ с глюкуроновои и серной кислотами, глицином, глутаматом, таурином и другими соединениями.

Более подробно реакции обезвреживания будут рассмотрены в разделе "Биотрансформация ксенобиотиков".

31.6. Желчеобразовательная функция печени.

Желчь - жидкий секрет желтовато-коричневого цвета, выделяемый печёночными клетками (500-700 мл в сутки). В состав желчи входят: желчные кислоты, холестерол и его эфиры, желчные пигменты, фосфолипиды, белки, минеральные вещества (Nа+ , К+ , Са2+ , Сl- ) и вода.

31.6.1. Желчные кислоты. Являются продуктами метаболизма холестерола, образуются в гепатоцитах. Различают первичные (холевая, хенодезоксихолевая) и вторичные (дезоксихолевая, литохолевая) желчные кислоты. В желчи присутствуют главным образом желчные кислоты, конъюгированные с глицином или таурином (например, гликохолевая, кислота, таурохолевая кислота и т.д.).

Желчные кислоты принимают непосредственное участие в переваривании жиров в кишечнике:

  • оказывают на пищевые жиры эмульгирующее действие;
  • активируют панкреатическую липазу;
  • способствуют всасыванию жирных кислот и жирорастворимых витаминов;
  • стимулируют перистальтику кишечника.

При нарушении оттока желчи желчные кислоты проникают в кровь и мочу.

31.6.2. Холестерол. С желчью выводится из организма избыток холестерола. Холестерол и его эфиры присутствуют в желчи в виде комплексов с желчными кислотами (холеиновые комплексы). При этом отношение содержания желчных кислот к содержанию холестерола (холатный коэффициент) должно быть не ниже 15. В противном случае нерастворимый в воде холестерол выпадает в осадок и откладывается в виде камней желчного пузыря (желчно-каменная болезнь).

31.6.3. Желчные пигменты. Из пигментов в желчи преобладает конъюгированный билирубин (моно- и диглюкуронид билирубина). Он образуется в клетках печени в результате взаимодействия свободного билирубина с УДФ-глюкуроновой кислотой. При этом снижается токсичность билирубина и увеличивается его растворимость в воде; далее конъюгированный билирубин секретируется в желчь. При нарушении оттока желчи (механическая желтуха) в крови значительно увеличивается содержание прямого билирубина, в моче обнаруживается билирубин, в кале и моче снижено содержание стеркобилина. Дифференциальную диагностику желтух см. в разделе "Обмен сложных белков".

31.6.4. Ферменты. Из ферментов, обнаруженных в желчи, следует в первую очередь отметить щелочную фосфатазу. Это экскреторный фермент, синтезируемый в печени. При нарушении оттока желчи активность щелочной фосфатазы в крови возрастает.

Г 32. Обмен белков и его регуляция. Биологическая ценность белков, азотистый баланс.

Обмен белков

Белки являются основным пластическим материалом, из которого построены клетки и ткани организма. Они являются составной частью мышц, ферментов, гормонов, гемоглобина, антител т других жизненно важных образований. В состав белков входят различные аминокислоты, к вторые подразделяются на заменимые и незаменимые. Заменимые аминокислоты могут синтезироваться в организме, а незаменимые (валин, лейцин, изолейцин, лизин, метионин, триптофан, треонин, фенилаланин, аргинин и гистидин) поступают только с пищей.

Поступившие в организм белки расщепляются в кишечнике до аминокислот и в таком виде всасываются в кровь и транспортируются в печень. Поступившие в печень аминокислоты подвергаются дезаминированию и переаминированию. Эти процессы обеспечивают синтез видоспецифичных аминокислот.. При избыточном поступлении белков с пищей, после отщепления от них аминогрупп, они превращаются в организме в углеводы и жиры. Белковых депо в организме человека нет.

Наряду с основной, пластической функцией, белки могут играть роль источников энергии. При окислении в организме 1 г белка выделяется 4.1 ккал энергии. Конечными продуктами расщепления белков в тканях являются мочевина, мочевая кислота, аммиак, креатин, креатинин и некоторые другие вещества. Они выводятся из организма почками и частично потовыми железами.

О состоянии белкового обмена в организме судят по азотистому балансу, т. е. по соотношению количества азота, поступившего в организм, и его количества, выведенного из организма

Регуляция обмена белков

Нейроэндокринная-регуляция обмена белков осуществляется группой гормонов.

Соматотропный гормон гипофиза во время роста организма стимулирует увеличение массы всех органов и тканей. У взрослого человека он обеспечивает процесс синтеза белка за счет повышения проницаемости клеточных мембран для аминокислот, усиления синтеза информационной РНК в ядре клетки и подавления синтеза катепсинов - внутриклеточных протеолитических ферментов.

Существенное влияние на белковый обмен оказывают гормоны щитовидной же­лезы - тироксин и трийодтиронин. Они могут в определенных концентрациях стимулировать синтез белка и благодаря этому активировать рост, развитие и дифференциацию тканей и органов.

Гормоны коры надпочечников - глюкокортикоиды (гидрокортизон, кортикостерон) усиливают распад белков в тканях, особенно в мышечной и лимфоидной. В печени же глюкокортикоиды, наоборот, стимулируют синтез белка.

Состояние белкового обмена оценивается по азотистому балансу . Это соотношение количества азота поступающего с белками пищи и выделенного из организма с азотсодержащими продуктами обмена. В белке содержится около 16 г азота. Следовательно выделение 1 г азота свидетельствует о распаде в организме 6,25 г белка. Если количество выделяемого азота равно количеству поглощенного организмом имеет место азотистое равновесие. Если поступившего.азота больше, чем выделенного, это называется положительным.азотистым балансом. В организме происходит задержка или ретенция азота. Положи­тельный азотистый баланс наблюдается при росте организма, при выздоровлении после тяжелых заболевания, сопровождавшихся похуданием и после длительного голодания. Когда количество азота, выделенного организмом больше, чем поступившего, имеет место отрицательный азотистый баланс. Его возникновение объясняется распадом собственных белков организма. Он возникает при голодании, отсутствии в пище незаменимых аминокислот, нарушениях переваривания и всасывания белка, тяжелых заболеваниях. Количество белка которое полностью обес­печивает потребности организма называется белковым оптимумом. Минимальное, обеспечивающее лишь сохранение азотистого баланса - белковым минимумом. ВОЗ рекомендует потребление белка не менее 0,75 г на кг веса в сутки. Энергетическая роль белков относительно небольшая