» » Гармонические колебания. Уравнение гармонических колебаний и его значение в исследовании природы колебательных процессов В уравнении гармонического колебания q q cos

Гармонические колебания. Уравнение гармонических колебаний и его значение в исследовании природы колебательных процессов В уравнении гармонического колебания q q cos

Мы рассмотрели несколько физически совершенно различных систем, и убедились, что уравнения движения приводятся к одной и той же форме

Различия между физическими системами проявляются лишь в различном определении величины и в различном физическом смысле переменной x : это может быть координата, угол, заряд, ток и т. д. Отметим, что при этом, как следует из самой структуры уравнения (1.18), величина всегда имеет размерность обратного времени.

Уравнение (1.18) описывает так называемые гармонические колебания .

Уравнение гармонических колебаний (1.18) является линейным дифференциальным уравнением второго порядка (так как оно содержит вторую производную от переменной x ). Линейность уравнения означает, что

    если какая-то функция x(t) является решением этого уравнения, то функция Cx(t) также будет его решением (C – произвольная постоянная);

    если функции x 1 (t) и x 2 (t) являются решениями этого уравнения, то их сумма x 1 (t) + x 2 (t) также будет решением того же уравнения.

Доказана также математическая теорема, согласно которой уравнение второго порядка имеет два независимых решения. Все остальные решения, согласно свойствам линейности, могут быть получены как их линейные комбинации. Непосредственным дифференцированием легко проверить, что независимые функции и удовлетворяют уравнению (1.18). Значит, общее решение этого уравнения имеет вид:

где C 1 , C 2 - произвольные постоянные. Это решение может быть представлено и в другом виде. Введем величину

и определим угол соотношениями:

Тогда общее решение (1.19) записывается как

Согласно формулам тригонометрии, выражение в скобках равно

Окончательно приходим к общему решению уравнения гармонических колебаний в виде:

Неотрицательная величина A называется амплитудой колебания , - начальной фазой колебания . Весь аргумент косинуса - комбинация - называется фазой колебания .

Выражения (1.19) и (1.23) совершенно эквивалентны, так что мы можем пользоваться любым их них, исходя из соображений простоты. Оба решения являются периодическими функциями времени. Действительно, синус и косинус периодичны с периодом . Поэтому различные состояния системы, совершающей гармонические колебания, повторяются через промежуток времени t* , за который фаза колебания получает приращение, кратное :

Отсюда следует, что

Наименьшее из этих времен

называется периодом колебаний (рис. 1.8), а - его круговой (циклической) частотой .

Рис. 1.8.

Используют также и частоту колебаний

Соответственно, круговая частота равна числу колебаний за секунд.

Итак, если система в момент времени t характеризуется значением переменной x(t), то, то же самое значение, переменная будет иметь через промежуток времени (рис.1.9), то есть

Это же значение, естественно, повторится через время 2T , ЗT и т. д.

Рис. 1.9. Период колебаний

В общее решение входят две произвольные постоянные (C 1 , C 2 или A , a ), значения которых должны определяться двумя начальными условиями . Обычно (хотя и не обязательно) их роль играют начальные значения переменной x(0) и ее производной .

Приведем пример. Пусть решение (1.19) уравнения гармонических колебаний описывает движение пружинного маятника. Значения произвольных постоянных зависят от способа, каким мы вывели маятник из состояния равновесия. Например, мы оттянули пружину на расстояние и отпустили шарик без начальной скорости. В этом случае

Подставляя t = 0 в (1.19), находим значение постоянной С 2

Решение, таким образом, имеет вид:

Скорость груза находим дифференцированием по времени

Подставляя сюда t = 0, находим постоянную С 1 :

Окончательно

Сравнивая с (1.23), находим, что - это амплитуда колебаний, а его начальная фаза равна нулю: .

Выведем теперь маятник из равновесия другим способом. Ударим по грузу, так что он приобретет начальную скорость , но практически не сместится за время удара. Имеем тогда другие начальные условия:

наше решение имеет вид

Скорость груза будет изменяться по закону:

Подставим сюда :

Основы теории Максвелла для электромагнитного поля

Вихревое электрическое поле

Из закона Фарадея ξ=dФ/dt следует, что любое изменение сцепленного с контуром потока магнитной индукции приводит к возникновению элек­тродвижущей силы индукции и вследствие этого появляется индукционный ток. Сле­довательно, возникновение э.д.с. электро­магнитной индукции возможно и в непод­вижном контуре, находящемся в перемен­ном магнитном поле. Однако э.д.с. в любой цепи возникает только тогда, когда в ней на носители тока действуют сторонние силы - силы неэлектростатического про­исхождения (см. § 97). Поэтому возника­ет вопрос о природе сторонних сил в дан­ном случае.

Опыт показывает, что эти сторонние силы не связаны ни с тепловыми, ни с хи­мическими процессами в контуре; их воз­никновение также нельзя объяснить сила­ми Лоренца, так как они на неподвижные заряды не действуют. Максвелл высказал гипотезу, что всякое переменное магнит­ное поле возбуждает в окружающем про­странстве электрическое поле, которое

и является причиной возникновения ин­дукционного тока в контуре. Согласно представлениям Максвелла, контур, в ко­тором появляется э.д.с., играет второсте­пенную роль, являясь своего рода лишь «прибором», обнаруживающим это поле.

первое уравнение Максвелла утверждает, что изменения электрического поля порождают вихревое магнитное поле.

Второе уравнен ие Максвелла выражает закон электромагнитной индукции Фарадея: ЭДС в любом замкнутом контуре равна скорости изменения (т. е. производной по времени) магнитного потока. Но ЭДС равна касательной составляющей вектора напряженности электрического поля Е, помноженной на длину контура. Чтобы перейти к ротору, как и в первом уравнении Максвелла, достаточно разделить ЭДС на площадь контура, а последнюю устремить к нулю, т. е. взять маленький контур, охватывающий рассматриваемую точку пространства (рис. 9,в). Тогда в правой части уравнения будет уже не поток, а магнитная индукция, поскольку поток равен индукции, помноженной на площадь контура.
Итак, получаем: rotE = - dB/dt.
Таким образом, вихревое электрическое поле порождается изменениями магнитного, что и подано на рис. 9,в и представлено только что приведенной формулой.
Третье и четвертое уравнения Максвелла имеют дело с зарядами и порождаемыми ими полями. Они основаны на теореме Гаусса, утверждающей, что поток вектора электрической индукции через любую замкнутую поверхность равен заряду внутри этой поверхности.

На уравнениях Максвелла основана целая наука - электродинамика, позволяющая строгими математическими методами решить множество полезных практических задач. Можно рассчитать, например, поле излучения различных антенн как в свободном пространстве, так и вблизи поверхности Земли или около корпуса какого-либо летательного аппарата, например, самолета или ракеты. Электродинамика позволяет рассчитать конструкцию волноводов и объемных резонаторов - устройств, применяющихся на очень высоких частотах сантиметрового и миллиметрового диапазонов волн, где обычные линии передачи и колебательные контуры уже непригодны. Без электродинамики невозможно было бы развитие радиолокации, космической радиосвязи, антенной техники и многих других разделов современной радиотехники.

Ток смещения

ТОК СМЕЩЕ́НИЯ, величина, пропорциональная скорости изменения переменного электрического поля в диэлектрике или вакууме. Название «ток» связано с тем, что ток смещения, так же как и ток проводимости, порождает магнитное поле.

При построении теории электромагнитного поля Дж. К. Максвелл выдвинул гипотезу (впоследствии подтвержденную на опыте) о том, что магнитное поле создается не только движением зарядов (током проводимости, или просто током), но и любым изменением во времени электрического поля.

Понятие ток смещения введено Максвеллом для установления количественных соотношений между изменяющимся электрическим полем и вызываемым им магнитным полем.

В соответствии с теорией Максвелла, в цепи переменного тока, содержащей конденсатор, переменное электрическое поле в конденсаторе в каждый момент времени создает такое магнитное поле, какое создавал бы ток, (названный током смещения), если бы он протекал между обкладками конденсатора. Из этого определения следует, что J см = J (т. е., численные значения плотности тока проводимости и плотности тока смещения равны), и, следовательно, линии плотности тока проводимости внутри проводника непрерывно переходят в линии плотности тока смещения между обкладками конденсатора. Плотность тока смещения j см характеризует скорость изменения электрической индукции D во времени:

J см = + ?D/?t.

Ток смещения не выделяет джоулевой теплоты, его основное физическое свойство - способность создавать в окружающем пространстве магнитное поле.

Вихревое магнитное поле создается полным током, плотность которого j , равна сумме плотности тока проводимости и тока смещения?D/?t. Именно поэтому для величины?D/?t и было введено название ток.

Гармоническим осциллятором называется система, которая совершает колебания, описываемые выражением вида d 2 s/dt 2 + ω 0 2 s = 0 или

где две точки сверху означают двукратное дифференцирование по времени. Колебания гармонического осциллятора есть важный пример периодического движения и служат точной или приближенной моделью во многих задачах классической и квантовой физики. В качестве примеров гармонического осциллятора могут быть пружинный, физический и математический маятники, колебательный контур (для токов и напряжений настолько малых, что можно было бы элементы контура считать линейными).

Гармонические колебания

Наряду с поступательными и вращательными движениями тел в механике значительный интерес представляют и колебательные движения. Механическими колебанияминазывают движения тел, повторяющиеся точно (или приблизительно) через одинаковые промежутки времени. Закон движения тела, совершающего колебания, задается с помощью некоторой периодической функции времени x = f (t ). Графическое изображение этой функции дает наглядное представление о протекании колебательного процесса во времени.

Примерами простых колебательных систем могут служить груз на пружине или математический маятник (рис. 2.1.1).

Механические колебания, как и колебательные процессы любой другой физической природы, могут быть свободными и вынужденными . Свободные колебания совершаются под действием внутренних сил системы, после того, как система была выведена из состояния равновесия. Колебания груза на пружине или колебания маятника являются свободными колебаниями. Колебания, происходящие под действием внешних периодически изменяющихся сил, называются вынужденными Простейшим видом колебательного процесса являются простые гармонические колебания , которые описываются уравнением

Частота колебаний f показывает, сколько колебаний совершается за 1 с. Единица частоты – герц (Гц). Частота колебаний f связана с циклической частотой ω и периодом колебаний T соотношениями:

дает зависимость колеблющейся величины S от времени t ; это и есть уравнение свободных гармонических колебаний в явном виде. Однако обычно под уравнением колебаний понимают иную запись этого уравнения, в дифференциальной форме. Возьмем для определенности уравнение (1) в виде

дважды продифференцируем его по времени:

Видно, что выполняется следующее соотношение:

которое и называется уравнением свободных гармонических колебаний (в дифференциальной форме). Уравнение (1) является решением дифференциального уравнения (2). Поскольку уравнение (2) - дифференциальное уравнение второго порядка, необходимы два начальных условия для получения полного решения (то есть определения входящих в уравнение (1) констант A и j 0); например, положение и скорость колебательной системы при t = 0.

Сложение гармонических колебаний одного направления и одинаковой частоты. Биения

Пусть совершаются два гармонических колебания одного направления и одинаковой частоты

Уравнение результирующего колебания будет иметь вид

Убедимся в этом, сложив уравнения системы (4.1)

Применив теорему косинусов суммы и сделав алгебраические преобразования:

Можно найти такие величины А и φ0 , чтобы удовлетворялись уравнения

Рассматривая (4.3) как два уравнения с двумя неизвестными А и φ0, найдем, возведя их в квадрат и сложив, а затем разделив второе на первое:

Подставляя (4.3) в (4.2), получим:

Или окончательно, используя теорему косинусов суммы, имеем:

Тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, совершает также гармоническое колебание в том же направлении и с той же частотой, что и складываемые колебания. Амплитуда результирующего колебания зависит от разности фаз (φ2-φ1) сгладываемых колебаний.

В зависимости от разности фаз (φ2-φ1):

1) (φ2-φ1) = ±2mπ (m=0, 1, 2, …), тогда A= А1+А2, т. е. амплитуда результирующего колебания А равна сумме амплитуд складываемых колебаний;

2) (φ2-φ1) = ±(2m+1)π (m=0, 1, 2, …), тогда A= |А1-А2|, т. е. амплитуда результирующего колебания равна разности амплитуд складываемых колебаний

Периодические изменения амплитуды колебания, возникающие при сложении двух гармонических колебаний с близкими частотами, называются биением.

Пусть два колебания мало отличаются по частоте. Тогда амплитуды складываемых колебаний равны А, а частоты равны ω и ω+Δω, причем Δω намного меньше ω. Начало отсчета выберем так, чтобы начальные фазы обоих колебаний были равны нулю:

Решим систему

Решение системы:

Результирующее колебание можно рассматривать как гармоническое с частотой ω, амплитуда А, которого изменяется по следующему периодическому закону:

Частота изменения А в два раза больше частоты изменения косинуса. Частота биений равна разности частот складываемых колебаний: ωб = Δω

Период биений:

Определение частоты тона (звука определенной высоты биений эталонным и измеряемым колебаниями - наиболее широко применяемый на метод сравнения измеряемой величины с эталонной. Метод биений используется для настройки музыкальных инструментов, анализа слуха и т. д.


Похожая информация.


Колебаниями называются движения или процессы, которые характеризуются опреде-ленной повторяемостью во времени. Колебательные процессы широко распространены в природе и технике, например качание маятника часов, переменный электрический ток и т. д. При колебательном движении маятника изменяется координата его центра масс, в случае переменного тока колеблются напряжение и ток в цепи. Физическая природа колебаний может быть разной, поэтому различают колебания механические, электро-магнитные и др. Однако различные колебательные процессы описываются одинаковы-ми характеристиками и одинаковыми уравнениями. Отсюда следует целесообразность единого подхода к изучению колебаний различной физической природы.

Колебания называются свободными , если они совершаются только под воздействием внутренних сил, действующих между элементами системы, после того как система выведена из положения равновесия внешними силами и предоставлена самой себе. Свободные колебания всегда затухающие колебания , ибо в реальных системах неизбежны потери энергии. В идеализированном случае системы без потерь энергии свободные колебания (продолжающиеся как угодно долго) называются собственными .

Простейшим типом свободных незатухающих колебаний являются гармонические колебания - колебания, при которых колеб-лющаяся величина изменяется со временем по закону синуса (косинуса). Колебания, встречающиеся в природе и технике, часто имеют характер, близкий к гармоническому.

Гармонические колеба-ния описываются уравнением, которое называется уравнением гармонических колебаний:

где А - амплитуда колебаний, максимальное значение колеблющейся величины х ; - круговая (циклическая) частота собственных колебаний; - начальная фаза колебания в мо-мент времени t = 0; - фаза колебания в момент времени t. Фаза колебания определяет значение колеблющейся величины в данный момент времени. Так как косинус изменяется в пределах от +1 до -1, то х может принимать значения от +A до -А .

Время T , за которое система совершает одно полное колебание, называется периодом колебаний . За время Т фаза колебания получает приращение 2π , т. е.

Откуда . (14.2)

Величина , обратная периоду колебаний

т. е. число полных колебаний, совершаемых в единицу времени, называется частотой колебаний. Сравнивая (14.2) и (14.3) получим

Единица частоты - герц (Гц): 1 Гц - частота, при кото-рой за 1с совершается одно полное колебание.

Системы, в которых могут происходить свободные колебания, называются осцилляторами . Какими же свойствами должна обладать система, чтобы в ней могли возникнуть свободные колебания? Механическая система должна иметь положение устойчивого равновесия , при выходе из которого появляется возвращающая сила, направленная к положению равновесия . Этому положению соответствуют, как известно, минимум потенциальной энергии системы. Рассмотрим несколько колебательных систем, удовлетворяющих перечисленным свойствам.

Гармоническое колебание - явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

где х - значение изменяющейся величины, t - время, остальные параметры - постоянные: А - амплитуда колебаний, ω - циклическая частота колебаний, - полная фаза колебаний, - начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде

(Любое нетривиальное решение этого дифференциального уравнения - есть гармоническое колебание с циклической частотой )

Виды колебаний

    Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия. Чтобы свободные колебания были гармоническими, необходимо, чтобы колебательная система была линейной (описывалась линейными уравнениями движения), и в ней отсутствовала диссипация энергии (последняя вызвала бы затухание).

    Вынужденные колебания совершаются под воздействием внешней периодической силы. Чтобы они были гармоническими, достаточно чтобы колебательная система была линейной (описывалась линейными уравнениями движения), а внешняя сила сама менялась со временем как гармоническое колебание (то есть чтобы зависимость от времени этой силы была синусоидальной).

Уравнение гармонических колебаний

Уравнение (1)

дает зависимость колеблющейся величины S от времени t; это и есть уравнение свободных гармонических колебаний в явном виде. Однако обычно под уравнением колебаний понимают иную запись этого уравнения, в дифференциальной форме. Возьмем для определенности уравнение (1) в виде

дважды продифференцируем его по времени:

Видно, что выполняется следующее соотношение:

которое и называется уравнением свободных гармонических колебаний (в дифференциальной форме). Уравнение (1) является решением дифференциального уравнения (2). Поскольку уравнение (2) - дифференциальное уравнение второго порядка, необходимы два начальных условия для получения полного решения (то есть определения входящих в уравнение (1) констант A и  ); например, положение и скорость колебательной системы при t = 0.

Математи́ческий ма́ятник - осциллятор, представляющий собой механическую систему, состоящую изматериальной точки, находящейся на невесомой нерастяжимой нити или на невесомом стержне в однородном поле сил тяготения. Период малых собственных колебаний математического маятника длины l неподвижно подвешенного в однородном поле тяжести с ускорением свободного падения g равен

и не зависит от амплитуды и массы маятника.

Физический маятник - осциллятор, представляющий собой твёрдое тело, совершающее колебания в поле каких-либо сил относительно точки, не являющейся центром масс этого тела, или неподвижной оси, перпендикулярной направлению действия сил и не проходящей через центр масс этого тела.

«Физика - 11 класс»

Ускорение - вторая производная координаты по времени.

Мгновенная скорость точки - это производная координаты точки по времени.
Ускорение точки - это производная ее скорости по времени, или вторая производная координаты по времени.
Поэтому уравнение движения маятника можно записать так:

где х" - вторая производная координаты по времени.

При свободных колебаниях координата х изменяется со временем так, что вторая производная координаты по времени прямо пропорциональна самой координате и противоположна ей по знаку.


Гармонические колебания

Из математики: вторые производные синуса и косинуса по их аргументу пропорциональны самим функциям, взятым с противоположным знаком, и никакие другие функции таким свойством не обладают.
Поэтому:
Координата тела, совершающего свободные колебания, меняется с течением времени по закону синуса или косинуса.


Периодические изменения физической величины в зависимости от времени, происходящие по закону синуса или косинуса, называются гармоническими колебаниями .


Амплитуда колебаний

Амплитудой гармонических колебаний называется модуль наибольшего смещения тела от положения равновесия.

Амплитуда определяется начальными условиями, а точнее энергией, сообщаемой телу.

График зависимости координаты тела от времени представляет собой косинусоиду.

х = x m cos ω 0 t

Тогда уравнение движения, описывающее свободные колебания маятника:

Период и частота гармонических колебаний.

При колебаниях движения тела периодически повторяются.
Промежуток времени Т, за который система совершает один полный цикл колебаний, называется периодом колебаний .

Частота колебаний - это число колебаний в единицу времени.
Если одно колебание совершается за время Т то число колебаний за секунду

В Международной системе единиц (СИ) единица частоты называется герцем (Гц) в честь немецкого физика Г. Герца.

Число колебаний за 2π с равно:

Величина ω 0 - это циклическая (или круговая) частота колебаний.
Через промежуток времени, равный одному периоду, колебания повторяются.

Частоту свободных колебаний называют собственной частотой колебательной системы.
Часто для краткости циклическую частоту называют просто частотой.


Зависимость частоты и периода свободных колебаний от свойств системы.

1. для пружинного маятника

Собственная частота колебаний пружинного маятника равна:

Она тем больше, чем больше жесткость пружины k, и тем меньше, чем больше масса тела m.
Жесткая пружина сообщает телу большее ускорение, быстрее меняет скорость тела, а чем тело массивнее, тем медленнее оно изменяет скорость под влиянием силы.

Период колебаний равен:

Период колебаний пружинного маятника не зависит от амплитуды колебаний.


2. для нитяного маятника

Собственная частота колебаний математического маятника при малых углах отклонения нити от вертикали зависит от длины маятника и ускорения свободного падения:

Период же этих колебаний равен

Период колебаний нитяного маятника при малых углах отклонения не зависит от амплитуды колебаний.

Период колебаний возрастает с увеличением длины маятника. От массы маятника он не зависит.

Чем меньше g, тем больше период колебаний маятника и, следовательно, тем медленнее идут часы с маятником. Так, часы с маятником в виде груза на стержне отстанут за сутки почти на 3 с, если их поднять из подвала на верхний этаж Московского университета (высота 200 м). И это только за счет уменьшения ускорения свободного падения с высотой.